Skip to main content
Log in

MOF@lignocellulosic nanofibril aerogel designed by carboxymethylated nanocellulose bridging for thermal insulation and fire retardancy

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Under the global issues of environmental pollution and energy crisis, cellulose nanofiber (CNF)–based aerogels have attracted great attention for energy-efficient building application. For safety concern, metal–organic frameworks (MOFs) could be incorporated to endow aerogels with fire retardancy. However, the aerogels prepared by blending of MOFs with cellulose fibers could not achieve fire resistance, while the in situ growth of MOFs in the system with additional chemicals and even environmental unfriendly processes cause high thermal conductivity of the aerogels. In this work, MIL-53(Al) nanoparticles were incorporated to lignocellulosic nanofibril (LCNF) aerogel by carboxymethylated nanocellulose (CMNC) bridging. Such novel binding technique relied on the nanoscaled size and abundant hydroxyl/carboxyl groups of CMNC fibers. In this case, strong molecular interactions were formed between MIL-53(Al) nanoparticles and cellulose fibers to endow aerogel with fire retardancy by char layer formation and gas suppression. In particular, the incorporated MIL-53(Al) nanoparticles provided abundant micropores and somehow prevented the formation of intramolecular hydrogen bonding among fibers to increase the complexity of pore structures. This endowed the aerogel with a thermal conductivity of 30.6 mW m–1 K–1, which also displayed excellent thermal insulation ability at 250 °C and − 196 °C. The green fabrication method would provide a novel idea for the design of MOF/cellulose composites to broaden their applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Missio AL, Otoni CG, Zhao B, Beaumont M, Khakalo A, Kamarainen T, Silva SHF, Mattos BD, Rojas OJ (2022) Nanocellulose removes the need for chemical crosslinking in tannin-based rigid foams and enhances their strength and fire retardancy. ACS Sustain Chem Eng 10(31):10303–10310. https://doi.org/10.1021/acssuschemeng.2c02678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu L-X, Wang X-L, Li S-L, Tang Y, Mai X-M (2022) Thermal performance of lonicera rupicola grass as a building insulation composite material. Adv Compos Hybrid Mater 6(1):8. https://doi.org/10.1007/s42114-022-00578-0

    Article  CAS  Google Scholar 

  3. Ge S, Ouyang H, Ye H, Shi Y, Sheng Y, Peng W (2023) High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Mater 6(1):44 https://doi.org/10.1007/s42114-023-00628-1

    Article  CAS  Google Scholar 

  4. Xie W, Yao F, Gu H, Du A, Lei Q, Naik N, Guo Z (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater 5(2):1003–1016. https://doi.org/10.1007/s42114-021-00413-y

    Article  CAS  Google Scholar 

  5. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48):e2101368. https://doi.org/10.1002/adma.202101368

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Zhang L, Yang Y, Pang B, Xu W, Duan G, Jiang S, Zhang K (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 33(11):e2005569. https://doi.org/10.1002/adma.202005569

    Article  CAS  PubMed  Google Scholar 

  7. Gu H, Huo X, Chen J, M. El-Bahy S, M. El-Bahy Z, (2022) An overview of cellulose aerogel: classification and applications. ES Food & Agrofor 10:1–9. https://doi.org/10.30919/esfaf782

    Article  CAS  Google Scholar 

  8. Khan S, Ul-Islam M, Fatima A, Manan S, Khattak WA, Wajid Ullah MW, Yang G (2023) Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature. ES Food & Agrofor 13:905. https://doi.org/10.30919/esfaf905

    Article  CAS  Google Scholar 

  9. Ye M, Wang S, Ji X, Tian Z, Dai L, Si C (2022) Nanofibrillated cellulose-based superhydrophobic coating with antimicrobial performance. Adv Compos Hybrid Mater 6(1):30. https://doi.org/10.1007/s42114-022-00602-3

    Article  CAS  Google Scholar 

  10. Zhang H-C, Yu C-N, Li X-Z, Wang L-F, Huang J, Tong J, Lin Y, Min Y, Liang Y (2022) Recent developments of nanocellulose and its applications in polymeric composites. ES Food & Agrofor 9:1–14. https://doi.org/10.30919/esfaf768

    Article  CAS  Google Scholar 

  11. Zhou S, Apostolopoulou-Kalkavoura V, Tavares da Costa MV, Bergstrom L, Stromme M, Xu C (2019) Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett 12(1):9. https://doi.org/10.1007/s40820-019-0343-4

    Article  ADS  CAS  Google Scholar 

  12. Li W, Li Z, Wang W, Li Z, Li Q, Qin C, Cao F (2021) Green approach to facilely design hydrophobic aerogel directly from bagasse. Ind Crop Prod 172:113957. https://doi.org/10.1016/j.indcrop.2021.113957

    Article  CAS  Google Scholar 

  13. Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Zhu Y-C, Guo Z (2021) Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 5(1):58–70. https://doi.org/10.1007/s42114-021-00362-6

    Article  CAS  Google Scholar 

  14. Ren X, Song M, Jiang J, Yu Z, Zhang Y, Zhu Y, Liu X, Li C, Oguzlu-Baldelli H, Jiang F (2022) Fire-retardant and thermal-insulating cellulose nanofibril aerogel modified by in situ supramolecular assembly of melamine and phytic acid. Adv Eng Mater 24(8):2101534. https://doi.org/10.1002/adem.202101534

    Article  CAS  Google Scholar 

  15. Huang J, Wang X, Guo W, Niu H, Song L, Hu Y (2022) Eco-friendly thermally insulating cellulose aerogels with exceptional flame retardancy, mechanical property and thermal stability. J Taiwan Inst Chem E 131:104159. https://doi.org/10.1016/j.jtice.2021.104159

    Article  CAS  Google Scholar 

  16. Rahaman SJ, Samanta A, Mir MH, Dutta B (2022) Metal-organic frameworks (MOFs): a promising candidate for stimuli-responsive drug delivery. ES Mater Manuf 19:792–2. https://doi.org/10.30919/esmm5f792

    Article  CAS  Google Scholar 

  17. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Bin XuB, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320:124144. https://doi.org/10.1016/j.seppur.2023.124144

    Article  CAS  Google Scholar 

  18. Xu H, Zu M, Cheng H, Liu D, Xie W (2022) A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Adv Compos Hybrid Mater 5(4):2896–2905. https://doi.org/10.1007/s42114-022-00481-8

    Article  CAS  Google Scholar 

  19. Zhang S, Cheng B, Jia Z, Zhao Z, Jin X, Zhao Z, Wu G (2022) The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater 5(3):1658–1698. https://doi.org/10.1007/s42114-022-00514-2

    Article  Google Scholar 

  20. Xue R, Guo H, Yang W, Huang S-L, Yang G-Y (2022) Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Adv Comp Hybrid Mater 5(3):1595–1611. https://doi.org/10.1007/s42114-022-00432-3

    Article  CAS  Google Scholar 

  21. Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li M-C (2022) Recent advances in metal organic framework and cellulose nanomaterial composites. Coordin Chem Rev 461:214496. https://doi.org/10.1016/j.ccr.2022.214496

    Article  CAS  Google Scholar 

  22. Nabipour H, Nie S, Wang X, Song L, Hu Y (2019) Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants. Cellulose 27(4):2237–2251. https://doi.org/10.1007/s10570-019-02860-9

    Article  CAS  Google Scholar 

  23. Zhou J, Fang M, Yang K, Lu K, Fei H, Mu P, He R (2022) MIL-101(Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management. J Energy Storage 52:104827. https://doi.org/10.1016/j.est.2022.104827

    Article  Google Scholar 

  24. Zhu SQ, Shu JC, Cao MS (2022) Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 14(19):7322–7331. https://doi.org/10.1039/d2nr01024k

    Article  CAS  PubMed  Google Scholar 

  25. Kr M, Ahmed S, AZ M, EKH A., KE M (2021) A novel sensitive and selective chemosensor for fluorescent detection of Zn2+ in cosmetics creams based on a covalent post functionalized Al-MOF. New J Chem 45(18):8054 https://doi.org/10.1039/c4gc01861c

    Article  Google Scholar 

  26. Wang Y, He L, Li Y, Jing L, Wang J, Li X (2020) Ag NPs supported on the magnetic Al-MOF/PDA as nanocatalyst for the removal of organic pollutants in water. J Alloy Compd 828(C):154340. https://doi.org/10.1016/j.jallcom.2020.154340

    Article  CAS  Google Scholar 

  27. Berardi U, Iannace G (2015) Acoustic characterization of natural fibers for sound absorption applications. Build Environ 94:840–852. https://doi.org/10.1016/j.buildenv.2015.05.029

    Article  Google Scholar 

  28. Sijie W, Xiang L, Ying C, Nana L, Yi D, Shixue D, Lei J, Qunfeng C (2021) High-strength scalable MXene films through bridging-induced densification. Science 374(6563):96. https://doi.org/10.1126/science.abg2026

    Article  ADS  CAS  Google Scholar 

  29. Sakuma W, Yamasaki S, Fujisawa S, Kodama T, Shiomi J, Kanamori K, Saito T (2021) Mechanically strong, scalable, mesoporous xerogels of nanocellulose featuring light permeability, thermal insulation, and flame self-extinction. ACS Nano 15(1):1436–1444. https://doi.org/10.1021/acsnano.0c08769

    Article  CAS  PubMed  Google Scholar 

  30. Ran F, Li C, Hao Z, Zhang X, Dai L, Si C, Shen Z, Qiu Z, Wang J (2022) Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Adv Compos Hybrid Mater 5(3):1841–1851. https://doi.org/10.1007/s42114-022-00460-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mu L, Dong Y, Li L, Gu X, Shi Y (2021) Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater Manuf 11:72–80. https://doi.org/10.30919/esmm5f1146

    Article  CAS  Google Scholar 

  32. Culebras M, Collins GA, Beaucamp A, Geaney H, Collins MN (2022) Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci 17:195–203. https://doi.org/10.30919/es8d608

    Article  CAS  Google Scholar 

  33. Zhang S, Li W, Wang W, Qin C, Wang S (2022) Paper-based dual-mode liquid manipulation system: oil/water separation and time-lapse droplet switch. Chem Eng J 427:131606. https://doi.org/10.1016/j.cej.2021.131606

    Article  CAS  Google Scholar 

  34. Qin C, Wang W, Li W, Zhang S, Li Z (2021) Developing bagasse towards superhydrophobic coatings. Cellulose 28(6):3617–3630. https://doi.org/10.1007/s10570-021-03743-8

    Article  CAS  Google Scholar 

  35. Li Z, Zhang Y, Huang Q, Chen Z, Wang W, Li W (2023) Tailorable lignocellulose-based aerogel to achieve the balance between evaporation enthalpy and water transport rate for efficient solar evaporation. ACS Appl Mater Interfaces 15(9):11827–11836. https://doi.org/10.1021/acsami.2c22615

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Li X, Wang B (2022) Controlling metal clusters in breathing metal-organic framework nanostructures for boosting visible-light-induced ·OH radical formation. ACS Appl Nano Mater 5(2):2510–2521. https://doi.org/10.1021/acsanm.1c04183

    Article  CAS  Google Scholar 

  37. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12(5):4462–4468. https://doi.org/10.1021/acsnano.8b00566

    Article  CAS  PubMed  Google Scholar 

  38. Lu W, Duan C, Liu C, Zhang Y, Meng X, Dai L, Wang W, Yu H, Ni Y (2020) A self-cleaning and photocatalytic cellulose-fiber- supported "Ag@AgCl@MOF- cloth’’ membrane for complex wastewater remediation. Carbohydr Polym 247:116691. https://doi.org/10.1016/j.carbpol.2020.116691

    Article  CAS  PubMed  Google Scholar 

  39. Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959. https://doi.org/10.1039/c2ta00315e

    Article  CAS  Google Scholar 

  40. Rahmani E, Rahmani M (2017) Al-based MIL-53 metal organic framework (MOF) as the new catalyst for Friedel-Crafts alkylation of benzene. Ind Eng Chem Res 57(1):169–178. https://doi.org/10.1021/acs.iecr.7b04206

    Article  CAS  Google Scholar 

  41. Mounfield WP 3rd, Walton KS (2015) Effect of synthesis solvent on the breathing behavior of MIL-53(Al). J Colloid Interf Sci 447:33–39. https://doi.org/10.1016/j.jcis.2015.01.027

    Article  ADS  CAS  Google Scholar 

  42. Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F, Jiang Z (2019) Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat Commun 10(1):2101. https://doi.org/10.1038/s41467-019-10157-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Naduparambath S, T VJ, V S, M PS, Balan AK, E P, (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088

    Article  CAS  PubMed  Google Scholar 

  44. Han X, Ding S, Fan L, Zhou Y, Wang S (2021) Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J Mater Chem A 9(34):18614–18622. https://doi.org/10.1039/d1ta04991g

    Article  CAS  Google Scholar 

  45. Sun X, Xu W, Zhang X, Lei T, Lee S-Y, Wu Q (2021) ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J Energy Chem 52:170–180. https://doi.org/10.1016/j.jechem.2020.04.057

    Article  CAS  Google Scholar 

  46. Qin H, Zhang Y, Jiang J, Wang L, Song M, Bi R, Zhu P, Jiang F (2021) Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Adv Funct Mater 31(46):2106269. https://doi.org/10.1002/adfm.202106269

    Article  CAS  Google Scholar 

  47. Fan Q, Ou R, Hao X, Deng Q, Liu Z, Sun L, Zhang C, Guo C, Bai X, Wang Q (2022) Water-induced self-assembly and in situ mineralization within plant phenolic glycol-gel toward ultrastrong and multifunctional thermal insulating aerogels. ACS Nano 16(6):9062–9076. https://doi.org/10.1021/acsnano.2c00755

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, Liao B, Sheberla D, Kraemer D, Zhou J, Stach EA, Zakharov D, Stavila V, Talin AA, Ge Y, Allendorf MD, Chen G, Léonard F, Dincă M (2017) A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule 1(1):168–177. https://doi.org/10.1016/j.joule.2017.07.018

    Article  CAS  Google Scholar 

  49. Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T (2020) Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 385:123963. https://doi.org/10.1016/j.cej.2019.123963

    Article  Google Scholar 

  50. Wang S, Meng W, Lv H, Wang Z, Pu J (2021) Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr Polym 270:118414. https://doi.org/10.1016/j.carbpol.2021.118414

    Article  CAS  PubMed  Google Scholar 

  51. Cao M, Li SL, Cheng JB, Zhang AN, Wang YZ, Zhao HB (2021) Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J Hazard Mater 403:123977. https://doi.org/10.1016/j.jhazmat.2020.123977

    Article  CAS  PubMed  Google Scholar 

  52. Wu K, Wu H, Wang R, Yan X, Sun W, Liu Y, Kuang Y, Jiang F, Chen S (2022) The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel. Ind Crop Prod 177:114424. https://doi.org/10.1016/j.indcrop.2021.114424

    Article  CAS  Google Scholar 

  53. Li SL, Wang J, Zhao HB, Cheng JB, Zhang AN, Wang T, Cao M, Fu T, Wang YZ (2021) Ultralight biomass aerogels with multifunctionality and superelasticity under extreme conditions. ACS Appl Mater Interfaces 13(49):59231–59242. https://doi.org/10.1021/acsami.1c17216

    Article  CAS  PubMed  Google Scholar 

  54. Berglund L, Nissila T, Sivaraman D, Komulainen S, Telkki VV, Oksman K (2021) Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Appl Mater Interfaces 13(29):34899–34909. https://doi.org/10.1021/acsami.1c07954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qi XL, Zhou DD, Zhang J, Hu S, Haranczyk M, Wang DY (2019) Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl Mater Interfaces 11(22):20325–20332. https://doi.org/10.1021/acsami.9b02357

    Article  CAS  PubMed  Google Scholar 

  56. Liu BW, Zhao HB, Wang YZ (2022) Advanced flame-retardant methods for polymeric materials. Adv Mater 34(46):e2107905. https://doi.org/10.1002/adma.202107905

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Wei Y, Wang Z, He X, Wang C, Lin H, Deng Y (2022) MOFs-derived self-sacrificing template strategy to double-shelled metal oxides nanocages as hierarchical interfacial catalyst for suppressing smoke and toxic gases releases of epoxy resin. Chem Eng J 432:134328. https://doi.org/10.1016/j.cej.2021.134328

    Article  CAS  Google Scholar 

  58. Feng J, Ma Z, Xu Z, Xie H, Lu Y, Maluk C, Song P, Bourbigot S, Wang H (2022) A Si-containing polyphosphoramide via green chemistry for fire-retardant polylactide with well-preserved mechanical and transparent properties. Chem Eng J 431:134259. https://doi.org/10.1016/j.cej.2021.134259

    Article  CAS  Google Scholar 

  59. Lou G, Ma Z, Dai J, Bai Z, Fu S, Huo S, Qian L, Song P (2021) Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustain Chem Eng 9(40):13595–13605. https://doi.org/10.1021/acssuschemeng.1c04718

    Article  CAS  Google Scholar 

  60. Zou S, Dang L, Li Y, Lan S, Zhu D, Li L (2022) Inorganic-organic dual modification of magnesium borate whisker by magnesium hydrate and dodecyl dihydrogen phosphate and its effect on the fire safety and mechanical properties of epoxy resin. Appl Surf Sci 589:153064. https://doi.org/10.1016/j.apsusc.2022.153064

    Article  CAS  Google Scholar 

  61. Zhang L, Zhang W, Peng Y, Wang W, Cao J (2022) Thermal behavior and flame retardancy of poplar wood impregnated with furfuryl alcohol catalyzed by boron/phosphorus compound system. Ind Crop Prod 176:114361. https://doi.org/10.1016/j.indcrop.2021.114361

    Article  CAS  Google Scholar 

  62. Zhou Y, Chu F, Yang W, Qiu S, Hu Y (2022) MOF-derived strategy to obtain CuCoOx functionalized HO-BN: a novel design to enhance the toughness, fire safety and heat resistance of bismaleimide resin. Chem Eng J 431:134013. https://doi.org/10.1016/j.cej.2021.134013

    Article  CAS  Google Scholar 

  63. Fu Q, Liu Y, Liu T, Mo J, Zhang W, Zhang S, Luo B, Wang J, Qin Y, Wang S, Nie S (2022) Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 102:107739. https://doi.org/10.1016/j.nanoen.2022.107739

    Article  CAS  Google Scholar 

  64. Ali M, Gabr HS, Mahmoud AH, Aboubakr D (2021) Assessing and characterizing the perception of soundscape in the Urban Park: a case study of Zayed Park. Egypt. Eng Sci 16:393–402. https://doi.org/10.30919/es8d593

    Article  Google Scholar 

  65. Zhao X, Hu Y, Xu X, Li M, Han Y, Huang S (2023) Sound absorption polyimide composite aerogels for ancient architectures’ protection. Adv Compos Hybrid Mater 6(4):137. https://doi.org/10.1007/s42114-023-00716-2

    Article  CAS  Google Scholar 

  66. Yu J, Zhang Y, Guo Q, Hou H, Ma Y, Zhao Y (2022) Effect of pressure on anisotropy in elasticity, sound velocity, and thermal conductivity of vanadium borides. Adv Compos Hybrid Mater 5(3):2297–2305. https://doi.org/10.1007/s42114-021-00403-0

    Article  CAS  Google Scholar 

  67. Zhao X, Ruan K, Qiu H, Zhong X, Gu J (2023) Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Adv Compos Hybrid Mater 6(5):171. https://doi.org/10.1007/s42114-023-00747-9

    Article  CAS  Google Scholar 

  68. He C, Huang J, Li S, Meng K, Zhang L, Chen Z, Lai Y (2017) Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials. ACS Sustain Chem Eng 6(1):927–936. https://doi.org/10.1021/acssuschemeng.7b03281

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangxi (2018GXNSFBA138027), Scientific Research Foundation of Guangxi University (XGZ170232) and Innovation Project of Guangxi Graduate Education (YCSW2022044).

Author information

Authors and Affiliations

Authors

Contributions

Zerong Li: Methodology, Analysis, and Writing—original draft preparation. Zhuoling Chen: Investigation. Qiaoling Huang: Investigation. Song Zhang: Writing–review & editing. Wei Wang: Resources and Software. Wei Li: Conceptualization, Funding acquisition, Supervision, Writing–review and editing, and Project administration. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10612 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, Z., Huang, Q. et al. MOF@lignocellulosic nanofibril aerogel designed by carboxymethylated nanocellulose bridging for thermal insulation and fire retardancy. Adv Compos Hybrid Mater 7, 28 (2024). https://doi.org/10.1007/s42114-024-00844-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00844-3

Keywords

Navigation