Skip to main content
Log in

Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Uncontrolled growth of bacteria is always a major concern for various industries such as food, cosmetic and pharmaceutical industries. Taking this issue into account, a non-leaching antimicrobial surface was developed using cellulose nanofibers with a post grafting green method to mimic the antibacterial activity of chitosan. A series of experiments was designed for silylation of nanofibers with 3-aminopropyl trimethoxysilane, varying the initial concentration of silane and the solvent employed during the grafting. The results, validated by Fourier transform infrared spectroscopy, thermogravimetric analysis and elemental analysis, provided evidence of successful functionalization. Moreover, SEM–EDX indicated that a heterogeneous grafting occurred at the surface and cross section of the film. Strong antimicrobial activity against gram positive (Bacillus subtilis and Staphylococcus aureus) and gram negative (Escherichia coli) was recorded. In aqueous solution, the optimum results were obtained using grafting silane concentration of 50 g/L. The grafted CNF showed no change in the morphology or thermal stability, meanwhile a significant reduction in bacterial concentration of 1.3 logs for B. subtilis, 1.8 log for S. aureus and 3.8 logs for E. coli was observed. Regarding the solvent used during the grafting, acetone showed the reversibility of bonds between silanol groups and cellulose nanofibers or high self-condensation reaction which was depicted by the Si NMR and formation of zones of inhibition. Furthermore, water employed as grafting solvent depicted better grafting efficiency than acetone, 10.2 versus 6.4 % respectively, at the similar concentration with apparent lower grafting time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AATCC Test Method 100 (1998) Quantitative assessment of antibacterial finishes on textiles—measures the degree of anti-bacterial activity. In: Developed in 1961 by AATCC Committee RA31 (USA)

  • Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agent with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  • Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Intern J Adhesion Adhesives 24:43–54

    Article  CAS  Google Scholar 

  • Abel M-L, Allington RD, Digby RP, Porritt N, Shaw SJ, Watts JF (2006) Understanding the relationship between silane application conditions, bond durability and locus of failure. Int J Adhes Adhes 26:2–15

    Article  CAS  Google Scholar 

  • Adelantado JVG, Ferrer Eres MA, Valle Algarra FM, Vicente JP, Bosch RF (2003) Analytical study by SEM/EDX and metallographic techniques of materials used in the iron production process during the iberian period. Talanta 60:895–910

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  Google Scholar 

  • Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson LS, Stenius P (2007) Nonleaching antimicrobial films prepared from surface modified microfibrillated cellulose. Biomacromolecules 8:2149–2155

    Article  CAS  Google Scholar 

  • Baikousi M, Dimos K, Bourlinos AB, Zboril R, Papadas I, Deligiannakis Y, Karakassides MA (2012) Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Appl Surf Sci 258:3703–3709

    Article  CAS  Google Scholar 

  • Barbucci R, Giani G, Fedi S, Bottari S, Casolaro M (2012) Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery. Acta Biomater 8:4244–4252

    Article  CAS  Google Scholar 

  • Bardet R, Belgacem N, Bras J (2013) Different strategies for obtaining high opacity films of MFC with TiO2 pigments. Cellulose 20:3025–3037

    Article  CAS  Google Scholar 

  • Bober P, Liu J, Mikkonen KS, Ihalainen P, Pesonen M, Plumed-Ferrer C, von Wright A, Lindfors T, Xu C, Latonen R-M (2014) Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromolecules 15:3655–3663

    Article  CAS  Google Scholar 

  • Britcher L, Kehoe D, Matisons J, Swincer G (1995) Siloxane coupling agents. Macromolecules 28:3110–3118

    Article  CAS  Google Scholar 

  • Brochier-Salon MC, Belgacem MN (2010) Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf A 366:147–154

    Article  CAS  Google Scholar 

  • Brochier-Salon MC, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A (2005) Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci 289:249–261

    Article  CAS  Google Scholar 

  • Brochier-Salon MC, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid state NMR. Magn Reson Chem 45:473–483

    Article  CAS  Google Scholar 

  • Brochier-Salon MC, Bardet M, Belgacem MN (2008) Solvolysis-Hydrolysis of N-bearing alkoxysilanes/reactions studied with 29Si NMR. Silicon Chem 3:335–350

    Article  CAS  Google Scholar 

  • Cozzolino CA, Nilsson F, Iotti M, Sacchi B, Piga A, Farris S (2013) Exploiting the nano-sized features of microfibrillated cellulose for the development of controlled-release packaging. Colloids Surf B Biointerfaces 110:208–216

    Article  CAS  Google Scholar 

  • Daniels MW, Francis LF (1998) Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J Colloid Interface Sci 205:191–200

    Article  CAS  Google Scholar 

  • Doménech A, Doménech-carbó MT, Vázquez de agredos pascual ML (2009) Correlation between spectral, sem/edx and electrochemical properties of maya blue: a chemometric study. Archaeometry 51:1015–1034

    Article  CAS  Google Scholar 

  • Faalzadeha M, Faghihiana H (2015) Separation of arsenic from aqueous solutions by amino-functionalized γ-Fe2O3-β-zeolite. Sep Sci Technol 50:958–964

    Article  CAS  Google Scholar 

  • Fan H-T, Li J, Li Z-C, Sun T (2012) An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium(II) from aqueous solution. Appl Surf Sci 258:3815–3822

    Article  CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Teodoro P, Alonso-Varona A, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with Aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297

    Article  CAS  Google Scholar 

  • Fernandes SCM, Sadocco P, Causio J, Silvestre AJD, Mondragon I, Freire CS (2014) Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: characterization and ability to form transparent films. Food Hydrocolloids 35:247–252

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813

    CAS  Google Scholar 

  • Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P et al (2014) Surface adhesins and exopolymers of selected foodborne pathogens. Microbiology 160:2561–2582

    Article  CAS  Google Scholar 

  • Klemm D, Stein A (1995) silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. Plast Eng 29:307–312

    CAS  Google Scholar 

  • Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82:308–315

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Sillard C, Bras J (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose 21:4429–4442

    Article  CAS  Google Scholar 

  • Leandro L, Malureanu R, Rozlosnik N, Lavrinenko A (2015) Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. ACS Appl Mater Interfaces 7:5797–5802

    Article  CAS  Google Scholar 

  • Liu K, Lin X, Chen L, Huang L, Cao S, Wang H (2013) Preparation of microfibrillated cellulose/Chitosan–Benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A Appl Sci Manuf 39:738–746

    Article  CAS  Google Scholar 

  • Luo Y, Huang J (2015) Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity. Chem Eur J 21:2568–2575

    Article  CAS  Google Scholar 

  • Marcoux L, Florek J, Kleitz F (2015) Critical assessment of the base catalysis properties of amino-functionalized mesoporous polymer-SBA-15 nanocomposites. Appl Catal A Gen 504:493–503

    Article  CAS  Google Scholar 

  • Martins NCT, Freire CSR, Pascoal NC, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2013) Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids Surf A 417:111–119

    Article  CAS  Google Scholar 

  • Missoum K, Bras J, Belgacem MN (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose (Dordrecht, Neth) 19:1957–1973

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  CAS  Google Scholar 

  • Missoum K, Sadocco P, Causio J, Belgacem MN, Bras J (2014) Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose. Mater Sci Eng C 45:477–483

    Article  CAS  Google Scholar 

  • Moazeni N, Mohamad Z, Dehbari N (2014) Study of silane treatment on poly-lactic acid (PLA)/SepioliteNanocomposite thin films. J Appl Polym Sci 132:41428/41421–41428/41428

  • Paquet O (2012) Modification of the surface of cellulose by organosilanes. In LGP2. University of Grenoble, Grenoble

    Google Scholar 

  • Peña-Alonso R, Rubio F, Rubio J (2005) The role of γ-aminopropyltriethoxysilane (γ-APS) on thermal stability of TEOS-PDMS ormosils. J Sol Gel Sci Technol 36:77–85

    Article  CAS  Google Scholar 

  • Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334

    Article  Google Scholar 

  • Qadeer MI, Savage SJ, Gedde UW, Hedenqvist MS (2014) Rheological and dynamic mechanical properties of polymerbonded magnets based on Sm2Co17 and polyamide-12. J Mater Sci 49:7529–7538

    Article  CAS  Google Scholar 

  • Ramaraju B, Imae T, Destaye AG (2015) Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation. Appl Catal A 492:184–189

    Article  CAS  Google Scholar 

  • Saini S, Belgacem MN, Mendes J, Elegir G, Bras Julien (2015a) Contact antimicrobial surface obtained by chemical grafting of microfibrillated cellulose in aqueous solution limiting antibiotic release. ACS Appl Mater Interfaces 7:18076–18085

    Article  CAS  Google Scholar 

  • Saini S, Belgacem MN, Missoum K, Julien B (2015b). Natural active molecule chemical grafting on the surface of microfibrillated cellulose for fabrication of contact active antimicrobial surfaces Industrial Crops and Products Accepted

  • Saini S, Yücel-Falco Ç, Belgacem MN, Julien B (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135:239–247

    Article  CAS  Google Scholar 

  • Sharma P, Lazar A, Singh AP (2012) Mn(III) based binapthyl Schiff base complex hetrogenized over organo-modified SBA-15: synthesis, characterization and catalytic application. Appl Catal A 439–440:101–110

    Article  CAS  Google Scholar 

  • Simone G, Neuzil P, Perozziello G, Francardi M, Malara N, Di Fabrizio E, Manz A (2012) A facile in situ microfluidic method for creating multivalent surfaces: toward functional glycomics. Lab Chip 12:1500–1507

    Article  CAS  Google Scholar 

  • Smuszkiewicz A, López-Sanz J, Pérez-Mayoral E, Sorianoc E, Sobczak I, Ziolek M, Martín-Aranda RM, López-Peinado AJ (2013) Amino-grafted mesoporous materials based on MCF structure involved in the quinoline synthesis. Mechanistic insights. J Mol Catal A Chem 378:38–46

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Zhang T, Zhou P, Zhan Y, Shi X, Lin J, Du Y, Li X, Deng H (2015) Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydr Polym 117:687–693

    Article  CAS  Google Scholar 

  • Zhao Y, Zhai S, Zhai B, An Q (2011) Facile fabrication of amino-functionalized porous materials for Pb2+ removal. J Optoelectron Adv Mater 13:1324–1330

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by new generation packaging (NEWGENPAK) project of the seven framework program of European research under Grant Agreement No 290098. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir—Grant Agreements No ANR-11-CARN-007-01 and ANR-11-CARN-030-01). This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Belgacem, M.N., Salon, MC.B. et al. Non leaching biomimetic antimicrobial surfaces via surface functionalisation of cellulose nanofibers with aminosilane. Cellulose 23, 795–810 (2016). https://doi.org/10.1007/s10570-015-0854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0854-1

Keywords

Navigation