Skip to main content
Log in

Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The standard methods for the crystallinity determination face significant problems with defining the clear boundary between the wood ordered and amorphous areas. Therefore, an alternative procedure describing wood ultrastructural composition was proposed. The new method profits by the application of the texture function and integration of intensities of the crystalline and amorphous X-ray signals. The crystalline volume fraction was defined and applied as a new parameter for the description of ultrastructural organization of wood. The proposed approach was tested for juvenile and mature Scots pine wood (Pinus sylvestris L.). The experimental procedure comprised of measurements of a set of incomplete pole figures, numerical determination of the Orientation Distribution Function, recalculation of a set of complete pole figures, approximation of the total intensities, and calculation of the volume fraction of the crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277

    Article  CAS  Google Scholar 

  • Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 57:459–465

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallities in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Averbach BL, Cohen M (1948) X-ray determination of retained austenite by integrated intensities. Trans Metall Soc AIME 176:401–415

    Google Scholar 

  • Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DN-S, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Bak JS, Ko JK, Choi I-G, Y-Ch Park, Seo J-H, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    Article  CAS  Google Scholar 

  • Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  CAS  Google Scholar 

  • Bonarski J, Olek W (2006) Texture function application for wood ultrastructure description. Part 1. Theory. Wood Sci Technol 40:159–171

    Article  CAS  Google Scholar 

  • Bonarski JT, Olek W (2007) Preferred crystallographic orientation in mature and juvenile wood. Z Kristallogr 222:199–203

    Article  CAS  Google Scholar 

  • Bonarski JT, Wróbel M, Pawlik K (2000) Quantitative phase analysis of duplex stainless steel using incomplete pole figures. Mater Sci Technol 16(6):657–662

    CAS  Google Scholar 

  • Bunge H-J (1982) Texture analysis in materials science. Butterworths, London

    Google Scholar 

  • Cave ID (1969) The longitudinal Young’s modulus of Pinus Radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown softwoods: the influence of microfibril angle. For Prod J 44:43–48

    Google Scholar 

  • Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17:329–338

    Article  CAS  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, London

    Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

  • Donaldson L (2008) Microfibril angle: measurement, variation and relationship–a review. IAWA J 29:345–386

    Google Scholar 

  • Esteban LG, de Palacios P, García Fernández F, García-Amorena I (2010a) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegradation 64:371–377

    Article  CAS  Google Scholar 

  • Esteban LG, de Palacios P, García Fernández F, Martín JA, Génova M, Fernández-Golfín JI (2010b) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1, 170 ± 40 BP. Wood Sci Technol 43:679–690

    Article  Google Scholar 

  • Eyholzer Ch, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  • Gümüşkaya E, Mustafa U (2006) Dependence of chemical and crystalline structure of alkali sulfite pulp on cooking temperature and time. Carbohydr Polym 65:461–468

    Article  Google Scholar 

  • Hang W, Liang M, Lu C (2007) Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14:447–456

    Article  Google Scholar 

  • Jasiukaitytė E, Kunaver M, Strlič M (2009) Cellulose liquefaction in acidified ethylene glycol. Cellulose 16:393–405

    Article  Google Scholar 

  • Jiang Z-H, Yang Z, So C-L, Hse C-Y (2007) Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. J Wood Sci 53:449–453

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleach and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResource 4:626–639

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17:299–307

    Article  CAS  Google Scholar 

  • Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Hartati S, Sudarmonowati E, Hayashi T (2009) Enzymatic saccharification and ethanol production of Acacia mangium and Paraserianthes falcataria wood, and Elaeis guineensis trunk. J Wood Sci 55:381–386

    Article  CAS  Google Scholar 

  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55:250–257

    Article  CAS  Google Scholar 

  • Kasai N, Kakudo M (2005) X-ray diffraction by macromolecules. Kodansha and Springer, Berlin

    Google Scholar 

  • Kim N-H (2005) An investigation of mercerization in decayed oak wood by a white rot fungus (Lentinula edodes). J Wood Sci 51:290–294

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Volume 1: fundamentals and analytical methods. Wiley, Weinheim

    Google Scholar 

  • Kukkola E, Saranpää P, Fagerstedt K (2008) Juvenile and compression wood cell wall layers differ in lignin structure in Norway spruce and Scots pine. IAWA J 29:47–54

    Google Scholar 

  • Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10:307–316

    Article  Google Scholar 

  • Meylen BA (1968) Cause of high longitudinal shrinkage in wood. For Prod J 18:75–78

    Google Scholar 

  • Mondal MdIH, Uraki Y, Ubukata M, Itoyama K (2008) Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines. Mechanical property and moisture sorption. Cellulose 15:581–592

    Article  CAS  Google Scholar 

  • Olek W, Bonarski J (2006) Texture function application for wood ultrastructure description. Part 2. Application. Wood Sci Technol 40:336–349

    Article  CAS  Google Scholar 

  • Pawlik K (1986) Determination of the orientation distribution from pole figures in arbitrarily defined cells. Physica Stat Solidi (B) 134:477–483

    Article  Google Scholar 

  • Pawlik K, Pospiech J (1987) A method for the ODF approximation in arbitrarily defined cells from pole figures. In: Bunge HJ (ed) Theoretical methods of texture analysis. DGM Informationsgesellschaft Verlag, Oberursel

    Google Scholar 

  • Pereira H, Graça J, Rodrigues JC (2003) Wood chemistry in relation to quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. CRC Press, Boca Raton

    Google Scholar 

  • Rayirath P, Avramidis S, Mansfield SD (2008) The effect of wood drying on crystallinity and microfibril angle in black spruce (Picea mariana). J Wood Chem Technol 28:167–179

    Article  CAS  Google Scholar 

  • Roe RJ (2000) Methods of X-ray and neutron scattering in polymer science. Oxford University Press, Oxford

    Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Google Scholar 

  • Saranpää P (2003) Wood density and growth. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. CRC Press, Boca Raton

    Google Scholar 

  • Schulz LG (1949) A direct method of determining preferred orientation of a flat reflection sample using a Geiger counter X-ray spectrometer. J Appl Phys 20:1030–1033

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sixta H, Potthast A, Krotschek AW (2006) Chemical pulping processes. In: Sixta H (ed) Handbook of pulp. Wiley, Weinheim

    Chapter  Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Google Scholar 

  • Stevanic JS, Salmén L (2009) Orientation of the wood polymers in the cell wall of spruce wood fibres. Holzforschung 63:497–503

    Article  CAS  Google Scholar 

  • Tarkowski L, Laskosz L, Bonarski J (2004) Optimization of X-ray pole figure measurement. Mater Sci Forum 443–444:137–140

    Article  Google Scholar 

  • Taylor JR (1997) An introduction to error analysis: the study of uncertainties in physical measurements, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Washusen R, Evans R (2001) Prediction of wood tangential shrinkage from cellulose crystallite width and density in one 11-year-old tree of Eucalyptus globulus Labill. Aust For 64:123–126

    Google Scholar 

  • Yeh T-F, Braun JL, Goldfarb B, Chang H-M, Kadla JF (2006) Morphological and chemical variations between juvenile wood, mature wood, and compression wood of loblolly pine (Pinus taeda L.). Holzforschung 60:1–8

    Article  CAS  Google Scholar 

  • Yudianti R, Indrarti L (2008) Effect of water soluble polymer on structure and mechanical properties of bacterial cellulose composites. J Appl Sci 8:177–180

    Article  CAS  Google Scholar 

  • Zugenmaier P (2008) Crystalline cellulose and derivatives: characterization and structures. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiesław Olek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonarski, J.T., Olek, W. Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18, 223–235 (2011). https://doi.org/10.1007/s10570-010-9486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9486-7

Keywords

Navigation