Skip to main content
Log in

Cellulose microfibril aggregates and their size variation with cell wall type

  • ORIGINAL
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The organization of wood cell wall components involves aggregates of cellulose microfibrils and matrix known as macrofibrils. A combination of field emission electron microscopy and environmental scanning electron microscopy was used to visualise the organization of macrofibrils in different cell wall types comparing normal and reaction wood of radiata pine and poplar as examples of a typical softwood and hardwood. The size of macrofibrils is shown to vary among cell wall types with the smallest structures occurring in the gelatinous layer of tension wood (14 nm) and the largest structures in the S2L layer of compression wood (23 nm). A positive correlation between macrofibril size and degree of lignification is observed, with macrofibrils apparently increasing in size in more highly lignified cell wall types. The fibrillar structure of the secondary wall varies from microfibril-sized structures of 3–4 nm up to large aggregates of 60 nm diameter. The size of macrofibrils also varies slightly among adjacent cells of the same cell wall type. Macrofibrils occur predominantly in a random arrangement, although radial and tangential lamellae may sometimes be seen in individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A mixture of 90% ethanol, 5% formaldehyde, and 5% glacial acetic acid.

References

  • Awano T, Takabe K, Fujita M (1998) Localization of glucuronoxylans in Japanese beech visualized by immunogold labeling. Protoplasma 202:213–222

    Article  CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M, Daniel G (2000) Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immuno-scanning electron microscopy. Protoplasma 212:72–79

    Article  CAS  Google Scholar 

  • Bardage S, Donaldson LA, Tokoh C, Daniel G (2003) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces: implication for pulp and paper properties. Nordic Pulp Paper Res J 19:448–452

    Google Scholar 

  • Bentum ALK, Côté WA, Day AC, Timell TE (1969) Distribution of lignin in normal and tension wood. Wood Sci Technol 3:218–231

    Article  CAS  Google Scholar 

  • Blanchette RA, Obst JR, Timell TE (1994) Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung 48:34–42

    CAS  Google Scholar 

  • Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26:189–195

    Google Scholar 

  • Côté WA, Day AC, Timell TE (1968) Studies on compression wood. VII. Distribution of lignin in normal and compression wood of tamarack [Larix laricina (Du Roi) K. Koch]. Wood Sci Technol 2:13–37

    Article  Google Scholar 

  • Daniel G (2003) Microview of wood under degradation by bacteria and fungi. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. ACS Symposium Series 845, Washington DC, pp 34–72

  • Daniel G, Duchesne I (1998) Revealing the surface ultrastructure of spruce pulp fibres using field emission-SEM. Proceedings of the 7th international conference on biotechnology in the pulp and paper industry, Vancouver, Canada, pp 81–85

  • Daniel G, Duchesne I, Tokoh C, Bardage S (2004a) The surface and intracellular nanostructure of wood fibres: electron microscope methods and observations. In: Schmitt U, Ander P, Barnett JC, Emmons AMC, Jeromidis G, Saranpaå P, Tschegg S (eds) Proceedings of COST action: wood fibre cell walls: methods to study their formation, structure and properties, pp 87–104

  • Daniel G, Volc J, Niku-Paavola ML (2004b) Cryo-FE-SEM and TEM immuno-techniques reveal new details for understanding white-rot decay of lignocellulose. C R Biol 327:861–871

    Article  CAS  Google Scholar 

  • Donaldson LA (1985) Within- and between-tree variation in lignin concentration in the tracheid cell wall of Pinus radiata. NZ J For Sci 15:361–369

    CAS  Google Scholar 

  • Donaldson LA (1994) Mechanical constraints on lignin deposition during lignification. Wood Sci Technol 28:111–118

    Article  CAS  Google Scholar 

  • Donaldson LA (1998) Between-tracheid variation in microfibril angles in radiata pine. Proceedings international workshop on microfibril angle, Westport, New Zealand, November 1997, pp 206–224

  • Donaldson LA (2001a) A three-dimensional computer model of the tracheid cell wall as a tool for interpretation of wood cell wall ultrastructure. IAWA J 22:213–233

    Google Scholar 

  • Donaldson LA (2001b) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873

    Article  CAS  Google Scholar 

  • Donaldson LA, Bond J (2005) Fluorescence microscopy of wood (CD-ROM). Scion, Rotorua

  • Donaldson LA, Frankland A (2004) Ultrastructure of iodine treated wood. Holzforschung 58:219–225

    Article  CAS  Google Scholar 

  • Donaldson LA, Singh AP, Yoshinaga A, Takabe K (1999) Lignin distribution in mild compression wood of Pinus radiata D. Don. Can J Bot 77:41–50

    Article  CAS  Google Scholar 

  • Donaldson LA, Hague JRB, Snell R (2001) Lignin distribution in coppice poplar, linseed and wheat straw. Holzforschung 55:379–385

    Article  CAS  Google Scholar 

  • Donaldson LA, Xu P (2005) Microfibril orientation in the secondary cell wall of juvenile and mature tracheids. Trees 19:644–653

    Article  Google Scholar 

  • Duchesne I, Daniel G (1999) The ultrastructure of wood fibre surfaces as shown by a variety of microscopical methods—a review. Nordic Pulp Paper Res J 14:129–139

    CAS  Google Scholar 

  • Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The effects of hemicellulose on fibril aggregation of Kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8:103–111

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345

    Article  Google Scholar 

  • Fahlén J, Salmén L (2003) Cross-sectional structure of the secondary cell wall of wood fibres as affected by processing. J Mater Sci 38:119–126

    Article  Google Scholar 

  • Fengel D (1970) Ultrastructural behaviour of cell wall polysaccharides. Tappi 53:497–503

    CAS  Google Scholar 

  • Frey-Wyssling A (1968) The ultrastructure of wood. Wood Sci Technol 2:73–83

    Article  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Hanley SJ, Gray DG (1994) Atomic force microscope images of black spruce wood sections and pulp fibers. Holzforschung 48:29–34

    CAS  Google Scholar 

  • Hanley SJ, Gray DG (1999) AFM images in air and water of Kraft pulp fibers. J Pulp Paper Sci 25:196–200

    CAS  Google Scholar 

  • Hamilton JK, Thompson NS (1959) A comparison of the carbohydrates of hardwoods and softwoods. Tappi 42:752–760

    CAS  Google Scholar 

  • Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal difference in the amount of immuno-gold labelled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197

    Article  PubMed  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001a) Cellulose aggregation—an inherent property of Kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001b) A CP/MAS 13C-NMR study of the supermolecular changes in the cellulose and hemicellulose structure during Kraft pulping. Nordic Pulp Paper Res J 16:46–52

    Google Scholar 

  • Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  • Jarvis MC (2005) Cellulose structure and hemicellulose cellulose association. The hemicellulose workshop 2005. The Wood Technology Research Centre, University of Canterbury, Christchurch, New Zealand, pp 87–102

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterisation of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Kataoka Y, Saiki H, Fujita M (1992) Arrangement and superimposition of cellulose microfibrils in the secondary walls of coniferous tracheids. Mokuzai Gakkaishi 38:327–335

    CAS  Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellulose Chem Technol 9:563–573

    Google Scholar 

  • Larsen MJ, Winandy JE, Green F (1995) A proposed model of the tracheid cell wall of southern yellow pine having an inherent radial structure in the S2 layer. Mater Organ 29:197–210

    Google Scholar 

  • Maeda Y, Awano T, Takabe K, Fujita M (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213:148–156

    Article  CAS  Google Scholar 

  • McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546

    Article  PubMed  CAS  Google Scholar 

  • Meier H, Wilkie KBC (1959) The distribution of polysaccharides in cell wall of tracheids of pine (Pinus silvestris L.). Holzforschung 13:177–182

    Article  CAS  Google Scholar 

  • Newman RH (1994) Crystalline forms of cellulose in softwoods and hardwoods. J Wood Chem Technol 14:451–466

    CAS  Google Scholar 

  • Newman RH (1999) Estimation of the relative proportions of cellulose I α and I β in wood by carbon-13 NMR spectroscopy. Holzforschung 53:335–340

    Article  CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C R Biol 327:889–901

    Article  PubMed  CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman & Hall, London

    Google Scholar 

  • Radotić K, Simić-Krstić J, Jeremić M, Trifunović M (1994) A study of lignin formation at the molecular level by scanning tunnelling microscopy. Biophys J 66:1763–1767

    Article  PubMed  Google Scholar 

  • Ruel K, Barnoud F, Goring DAI (1978) Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy. Wood Sci Technol 12:287–291

    Article  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell wall structure. C R Biol 327:873–880

    Article  PubMed  CAS  Google Scholar 

  • Salmén L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J Pulp Paper Sci 24:99–103

    Google Scholar 

  • Sell J, Zimmermann T (1993a) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh-Werkst 51:384

    Article  Google Scholar 

  • Sell J, Zimmermann T (1993b) The structure of the cell wall layer S2. Field-emission SEM studies on transverse-fracture surfaces of the wood of spruce and white fir. Forschungs Arbeitsbericht 115/28

  • Singh AP, Sell J, Schmitt U, Zimmermann T, Dawson B (1998) Radial striation of the S2 layer in mild compression wood tracheids of Pinus radiata. Holzforschung 52:563–566

    Article  CAS  Google Scholar 

  • Singh AP, Daniel G, Nilsson T (2002) Ultrastructure of the S2 layer in relation to lignin distribution in Pinus radiata tracheids. J Wood Sci 48:95–98

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry 2nd edn. WH Freeman, San Francisco

    Google Scholar 

  • Terashima N, Awano T, Takabe K, Yoshida M (2004) Formation of macromolecular lignin in ginkgo xylem cell walls as observed by FESEM. C R Biol 327:903–910

    Article  PubMed  CAS  Google Scholar 

  • Turkulin H, Holzer L, Richter K, Sell J (2005a) Application of the ESEM technique in wood research. Part I. Optimisation of imaging parameters and working conditions. Wood Fiber Sci 37:552–564

    CAS  Google Scholar 

  • Turkulin H, Holzer L, Richter K, Sell J (2005b) Application of the ESEM technique in wood research. Part II. Comparison of operational modes. Wood Fiber Sci 37:565–573

    CAS  Google Scholar 

  • Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2006) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol (published online July 2006)

  • Zimmermann T, Thommen V, Reimann P, Hug HJ (2006) Ultrastructural appearance of embedded and polished wood cell walls as revealed by atomic force microscopy. J Struct Biol (published online June 2006)

  • Zimmermann T, Sell J (1997) The fine structure of the cell wall on transverse-fracture surfaces of longitudinally tension-loaded hardwoods. Forschungs Arbeitsbericht 115/35

    Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. Geoff Daniel and Assoc. Prof. Stig Bardage, Wood Ultrastructure Research Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden, for hosting my visit to Sweden in 2001, during which time this work was initiated. This work was partially funded by a grant from the ISAT Linkages fund of the Royal Society of New Zealand. I gratefully acknowledge the assistance of Catherine Hobbis and Bryony James, University of Auckland, for assistance with environmental scanning electron microscopy. I am also grateful to Adya Singh and Tim Strabala, Scion, and two anonymous referees, for helpful comments on the manuscript, and to Prof. Noritsugu Terashima, Nagoya University, for some discussion on macrofibril size.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Donaldson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, L. Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41, 443–460 (2007). https://doi.org/10.1007/s00226-006-0121-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0121-6

Keywords

Navigation