Skip to main content
Log in

Platinum–Dendrimer Nanocomposite Films on Gold Surfaces for Electrocatalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this communication, we report a strategy for the preparation of Pt nanoparticles encapsulated in Generation 4.5 (Polyamido amine) PAMAM dendrimer and subsequent chemical linking of the nanocomposite to the gold electrode through a self assembled cystamine monolayer. The modification resulted in the formation of a robust electrochemically active thin film with very high surface area, reflected by the enhanced hydrogen adsorption coverage. Interestingly, TEM images revealed self-assembly of Pt nanoparticles and the SAED (Selected Area Electron Diffraction) patterns showed the presence of Pt single crystals (111). The Pt-dendrimer nanocomposite film obtained using the novel modification procedure exhibited high electrocatalytic activity for the oxidation of organic fuels like methanol, ethanol and ethylene glycol. The film did not suffer from degradation even after repeated use in solution-phase voltammetry. It is however observed that the intermediate SAM layer and the bulky PAMAM dendrimer (generation 4.5) have slowed down the electron transfer kinetics which is reflected by a relatively high overpotential for methanol oxidation. Nevertheless this shortcoming is more than compensated by the existence of Pt(111) planes, which alleviate CO poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raimondi F, Scherer GG, Katz R, Wokaun A (2005) Angew Chem Int Ed 44:2190

    Article  CAS  Google Scholar 

  2. Peng X, Koczkur K, Nigro S, Chen A (2004) Chem Commun 2872

  3. Zhou ZH, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q (2003) Chem Commun 394

  4. Chan K-Y, Ding J, Ren J, Cheng S, Tsang KY (2004) J Mater Chem 14:504

    Article  Google Scholar 

  5. Park S, Chung TD, Kim HC (2003) Anal Chem 75:3046

    Article  CAS  Google Scholar 

  6. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  7. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181

    Article  CAS  Google Scholar 

  8. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  9. Niu Y, Yeung LK, Crooks RM (2001) J Am Chem Soc 123:6840

    Article  CAS  Google Scholar 

  10. Li Y, El-Sayed MA (2001) J Phys Chem B 105:8938

    Article  CAS  Google Scholar 

  11. Rahim EH, Kamounah FS, Frederiksen J, Christensen JB (2001) Nano Lett 1:499

    Article  CAS  Google Scholar 

  12. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K (2002) Nano Lett 2:999

    Article  CAS  Google Scholar 

  13. Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Chem Mater 13:1674

    Article  CAS  Google Scholar 

  14. Chung Y-M, Rhee H-K (2003) Catal Lett 85:159

    Article  CAS  Google Scholar 

  15. Toshima N, Yonezawa T, Kushihashi K (1993) J Chem Soc Faraday Trans 89:2537

    Article  CAS  Google Scholar 

  16. Scott RWJ, Datye AK, Crooks RM (2003) J Am Chem Soc 125:3709

    Google Scholar 

  17. Scott RWJ, Wilson OM, Oh S-K, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583

    Article  CAS  Google Scholar 

  18. Ledesma-Garcia J, Manriquez J, Gutierrez-Granados S, Godinez LA (2003) Electroanalysis 15:659

    Article  CAS  Google Scholar 

  19. Bustos E, Manriquez J, Orozco G, Godinez LA (2005) Langmuir 121:3013

    Article  Google Scholar 

  20. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930

    Article  CAS  Google Scholar 

  21. Esumi K, Akiyama S, Yoshimuna T (2003) Langmuir 19:7679

    Article  CAS  Google Scholar 

  22. Esumi K, Houdatsu H, Yoshimura T (2004) Langmuir 20:2536

    Article  CAS  Google Scholar 

  23. Endo T, Yoshimura T, Esumi K (2005) J Colloid Interface Sci 286:602

    Article  CAS  Google Scholar 

  24. Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Langmuir 16:2604

    Article  CAS  Google Scholar 

  25. Yang L, Luo Y, Jia X, Ji Y, You L, Zhou Q (2004) J Phys Chem B 108:1176

    Article  CAS  Google Scholar 

  26. Kim JW, Choi E-A, Park S-M (2003) J Electrochem Soc 150:E202

    Article  CAS  Google Scholar 

  27. Raghu S, Berchmans S, Phani KLN, Yegnaraman V (2005) Pramana J Phys 65:821

    Article  CAS  Google Scholar 

  28. McMurray J (2000) Organic chemistry, 5th edn. Brooks/Cole, USA, p 895, 1003

  29. Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Macromolecules 33:6042

    Article  Google Scholar 

  30. Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R (1997) J Polym Sci 35:2913

    CAS  Google Scholar 

  31. Left DV, Ohara PC, Heath JR, Gelbert WM (1995) J Phys Chem 99:7036

    Article  Google Scholar 

  32. Diallo MS, Christie S, Swaminathan P, Balogh L, Shi X, Um W, Papelis C, Goddard WA III, Johnson JH Jr (2004) Langmuir 20:2640

    Article  CAS  Google Scholar 

  33. Maiti PK, Cagin T, Lin ST, Goddard WA III (2006) Macromolecules 38:979

    Article  Google Scholar 

  34. Ottaviani MF, Bossmann S, Turro NJ, Tomalia DA (1994) J Am Chem Soc 116:661

    Article  CAS  Google Scholar 

  35. Park S, Weaver MJ (2002) J Phys Chem B 106:8667

    Article  CAS  Google Scholar 

  36. Ye H, Scott RWJ, Crooks RM (2004) Langmuir 20:2915

    Article  CAS  Google Scholar 

  37. Oh S-K, Kim Y-G, Ye H, Crooks RM (2003) Langmuir 19:10420

    Article  CAS  Google Scholar 

  38. Zhao M, Crooks RM (1999) Adv Mater 11:217

    Article  CAS  Google Scholar 

  39. Gu Y, Xie H, Gao J, Liu D, Williams CT, Murphy CJ, Ploehn HJ (2005) Langmuir 21:3122

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. John Wiley & Sons Inc., NY, p 560

  41. Kabbabi A, Gloaguen F, Andolfatto F, Durand RJ (1994) J Electroanal Chem 373:251

    Article  CAS  Google Scholar 

  42. Attard GA, Ahmadi A, Jenkins DJ, Hazzazi OA, Wells PB, Griffin KG, Johnson P, Gillies JE (2003) Chem Phys Chem 4:123

    Google Scholar 

  43. Finklea HO (1996) In: Bard AJ, Rubinstein J (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 109–335

  44. Bond GC (2002) Catal Today 72:5

    Article  CAS  Google Scholar 

  45. Park S, Xie Y, Weaver MJ (2002) Langmuir 18:5792

    Article  CAS  Google Scholar 

  46. Jarvi TD, Stuve EM (1998) In: Lipkowski J, Ross PN (eds) Electrocatalysis, frontiers of electrochemistry series, Chapter 3. Wiley-VCH Publishers, New York, pp 75–153

  47. Mukerjee S, McBreen J (1998) J Electroanal Chem 448:163

    Article  CAS  Google Scholar 

  48. Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD (2004) J Am Chem Soc 126:4043

    Article  CAS  Google Scholar 

  49. Nierengarten J-F (2005) Angew Chem Int Ed 44:2830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Water & Steam Laboratory, IGCAR for XPS, and SAIF (IIT-Mumbai) and JNCASR, Bangalore for TEM measurements. The financial support by DRDO & DST (New Delhi) for the projects on Nanoscale Materials is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghu, S., Nirmal, R.G., Mathiyarasu, J. et al. Platinum–Dendrimer Nanocomposite Films on Gold Surfaces for Electrocatalysis. Catal Lett 119, 40–49 (2007). https://doi.org/10.1007/s10562-007-9154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9154-1

Keywords

Navigation