Skip to main content
Log in

A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports a simple method used to fabricate a stretchable conductive polypyrrole (PPy) rough pore-shape polydimethylsiloxane (p-PDMS) device. An abrasive paper is first used to imprint rough micro-structures on the SU-8 micromold. The p-PDMS microchannel is then fabricated using a standard soft-lithography process. An oxygen plasma treatment is then applied to form an irreversible sealing between the microchannel and a blank cover PDMS. The conductive layer is formed by injecting the PPy mixture into the microchannel which polymerizes in the rough pore-shape micro-structures; The PPy/p-PDMS hybrid device shows good electrical property and stretchability. The electrical properties of different geometrical designs of the PPy/p-PDMS microchannel under stretching were investigated, including straight, curved, and serpentine. Mouse embryonic fibroblasts (NIH/3 T3) were also cultured inside the PPy/p-PDMS device to demonstrate good biocompatibility and feasibility using the conductive and stretchable microchannel in cell culture microfluidics applications. Finally, cyclic stretching and bending tests were performed to evaluate the reliability of PPy/p-PDMS microchannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A. Aziz, C. Geng, M. Fu, X. Yu, K. Qin, B. Liu, The role of microfluidics for organ on Chip simulations. Bioengineering 4, 39 (2017)

    Article  Google Scholar 

  • I. Bernardeschi, F. Greco, G. Ciofani, A. Marino, V. Mattoli, B. Mazzolai, L. Beccai, A soft, stretchable and conductive biointerface for cell mechanobiology. Biomed. Microdevices 17, 46 (2015)

    Article  Google Scholar 

  • S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760 (2014)

    Article  Google Scholar 

  • M.T. Chen, L. Zhang, S.S. Duan, S.L. Jing, H. Jiang, C.Z. Li, Highly stretchable conductors integrated with a conductive carbon nanotube/Graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 24, 7548–7556 (2014)

    Article  Google Scholar 

  • M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, PMMA/zinc oxide Nanocomposites prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 27, 763–770 (2006)

    Article  Google Scholar 

  • S.S. Duan, K. Yang, Z.H. Wang, M.T. Chen, L. Zhang, H.B. Zhang, C.Z. Li, Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/Graphene network. ACS Appl. Mater. Interfaces 8, 2187–2192 (2016)

    Article  Google Scholar 

  • C.F. Feng, Z.F. Yi, L.F. Dumee, C.J. Garvey, F.H. She, B. Lin, S. Lucas, J. Schutz, W.M. Gao, Z. Peng, L.X. Kong, Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon 93, 878–886 (2015)

    Article  Google Scholar 

  • J.L. Fritz, M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. J. Adhes. 54, 33–45 (1995)

    Article  Google Scholar 

  • W. Guo, X. Zhang, X. Yu, S. Wang, J. Qiu, W. Tang, L. Li, H. Liu, Z.L. Wang, Self-powered electrical stimulation for enhancing neural differentiation of Mesenchymal stem cells on Graphene–poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10, 5086–5095 (2016)

    Article  Google Scholar 

  • S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, R.M.T. Fleming, Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015)

    Article  Google Scholar 

  • W.W. Hu, Y.T. Hsu, Y.C. Cheng, C. Li, R.C. Ruaan, C.C. Chien, C.A. Chung, C.W. Tsao, Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications 37, 28–36 (2014)

    Article  Google Scholar 

  • Y. Huang, Y. Li, J. Chen, H. Zhou, S. Tan, Electrical stimulation elicits neural stem cells activation: New perspectives in CNS repair. Front. Hum. Neurosci. 9, 586 (2015)

    Google Scholar 

  • T. Jung, S. Yang, Highly stable liquid metal-based pressure sensor integrated with a Microfluidic Channel. Sensors 15, 11823–11835 (2015)

    Article  Google Scholar 

  • E.M. Kearney, E. Farrell, P.J. Prendergast, V.A. Campbell, Tensile strain as a regulator of Mesenchymal stem cell Osteogenesis. Ann. Biomed. Eng. 38, 1767–1779 (2010)

    Article  Google Scholar 

  • Kenry, J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & Nanoengineering 2, 16043 (2016a)

    Article  Google Scholar 

  • Kenry, J.C. Yeo, J.H. Yu, M.L. Shang, K.P. Loh, C.T. Lim, Highly flexible Graphene oxide Nanosuspension liquid-based microfluidic tactile sensor. Small 12, 1593–1604 (2016b)

    Article  Google Scholar 

  • D. Kim, S.J. Heo, S.H. Kim, J. Shin, S. Park, J.W. Shin, Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol. Lett. 33, 2351–2359 (2011)

    Article  Google Scholar 

  • A. Larmagnac, S. Eggenberger, H. Janossy, J. Voros, Stretchable electronics based on Ag-PDMS composites. Sci. Rep. 4 (2014)

  • J.B. Lee, D.Y. Khang, Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Compos. Sci. Technol. 72, 1257–1263 (2012)

    Article  Google Scholar 

  • J.H. Lee, I.-H. Oh, H.K. Lim, Stem cell therapy: A prospective treatment for Alzheimer's disease. Psychiatry Investigation 13, 583–589 (2016)

    Article  Google Scholar 

  • Y.R. Liu, C.T. Buckley, K.J. Mulhall, D.J. Kelly, Combining BMP-6, TGF-beta 3 and hydrostatic pressure stimulation enhances the functional development of cartilage tissues engineered using human infrapatellar fat pad derived stem cells. Biomaterials Science 1, 745–752 (2013)

    Article  Google Scholar 

  • Z. Ma, A. Teo, S. Tan, Y. Ai, N.-T. Nguyen, Self-aligned Interdigitated transducers for Acoustofluidics. Micromachines 7, 216 (2016)

    Article  Google Scholar 

  • S.E. Marsh, M. Blurton-Jones, Neural stern cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int. 106, 94–100 (2017)

    Article  Google Scholar 

  • M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. J. Colloid Interface Sci. 137, 11–24 (1990)

    Article  Google Scholar 

  • M. Nikmanesh, Z.D. Shi, J.M. Tarbell, Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol. Bioeng. 109, 583–594 (2012)

    Article  Google Scholar 

  • H. Ota, K. Chen, Y.J. Lin, D. Kiriya, H. Shiraki, Z.B. Yu, T.J. Ha, A. Javey, Highly deformable liquid-state heterojunction sensors. Nat. Commun. 5, 5032 (2014)

    Article  Google Scholar 

  • A. Pavesi, F. Piraino, G.B. Fiore, K.M. Farino, M. Moretti, M. Rasponi, How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11, 1593–1595 (2011)

    Article  Google Scholar 

  • C. Racles, V.E. Musteata, A. Bele, M. Dascalu, C. Tugui, A.L. Matricala, Highly stretchable composites from PDMS and polyazomethine fine particles. RSC Adv. 5, 102599–102609 (2015)

    Article  Google Scholar 

  • J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  • A.J. Steward, S.D. Thorpe, T. Vinardell, C.T. Buckley, D.R. Wagner, D.J. Kelly, Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomater. 8, 2153–2159 (2012)

    Article  Google Scholar 

  • S.H. Tan, N.-T. Nguyen, Y.C. Chua, T.G. Kang, Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4, 032204 (2010)

    Article  Google Scholar 

  • S.H. Tan, F. Maes, B. Semin, J. Vrignon, J.C. Baret, The microfluidic jukebox. Sci. Rep. 4 (2014a)

  • S.H. Tan, B. Semin, J.C. Baret, Microfluidic flow-focusing in ac electric fields. Lab Chip 14, 1099–1106 (2014b)

    Article  Google Scholar 

  • J. Tang, H. Guo, M.M. Zhao, J.T. Yang, D. Tsoukalas, B.Z. Zhang, J. Liu, C.Y. Xue, W.D. Zhang, Highly stretchable electrodes on wrinkled Polydimethylsiloxane substrates. Sci. Rep. 5 (2015)

  • C.-W. Tsao, X.-C. Guo, W.-W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. RSC Adv. 6, 113344–113351 (2016)

    Article  Google Scholar 

  • W. Viratyaporn, R.L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J. Therm. Anal. Calorim. 103, 267–273 (2011)

    Article  Google Scholar 

  • C.Y. Wu, W.H. Liao, Y.C. Tung, Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab Chip 11, 1740–1746 (2011)

    Article  Google Scholar 

  • H.-D. Xi, H. Zheng, W. Guo, A.M. Ganan-Calvo, Y. Ai, C.-W. Tsao, J. Zhou, W. Li, Y. Huang, N.-T. Nguyen, S.H. Tan, Active droplet sorting in microfluidics: A review. Lab Chip 17, 751–771 (2017)

    Article  Google Scholar 

  • Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998). https://doi.org/10.1146/annurev.matsci.28.1.153

  • J.C. Yeo, J.H. Yu, Z.M. Koh, Z.P. Wang, C.T. Lim, Wearable tactile sensor based on flexible microfluidics. Lab Chip 16, 3244–3250 (2016)

    Article  Google Scholar 

  • T. Zhang, Blum FD cationic surfactant blocks radical-inhibiting sites on silica. J. Colloid Interface Sci. 504, 111–114 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology, Taiwan, and National Central University–Cathay General Hospital joint research program, for financially supporting this project under Grant No. MOST 105-2221-E-008-061, MOST 104-2911-I-008-514, and 105 CGH-NCU-A2. S.H Tan gratefully acknowledges the support of the Australian Research Council DECRA Fellowship (DE170100600), Griffith University-Peking University Collaboration Grant and Griffith University-Simon Fraser University collaborative grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Tsao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XC., Hu, WW., Tan, S.H. et al. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment. Biomed Microdevices 20, 30 (2018). https://doi.org/10.1007/s10544-018-0273-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0273-9

Keywords

Navigation