Skip to main content

Advertisement

Log in

Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A role for mechanical stimulation in the control of cell fate has been proposed and mechanical conditioning of mesenchymal stem cells (MSCs) is of interest in directing MSC behavior for tissue engineering applications. This study investigates strain-induced differentiation and proliferation of MSCs, and investigates the cellular mechanisms of mechanotransduction. MSCs were seeded onto a collagen-coated silicone substrate and exposed to cyclic tensile mechanical strain of 2.5% at 0.17 Hz for 1–14 days. To examine mechanotransduction, cells were strained in the presence of the stretch-activated cation channel (SACC) blocker, gadolinium chloride (GdCl3); the extracellular regulated kinase (ERK) inhibitor, U0126; the p38 inhibitor, SB203580; and the phosphatidylinosito1 3-kinase (PI3-kinase) inhibitor, LY294002. Following exposure to strain, the osteogenic markers Cbfα1, collagen type I, osteocalcin, and BMP2 were temporally expressed. Exposure to strain in the presence of GdCl3 (10 μM) reduced the induction of collagen I expression, thus identifying a role for SACC, at least in part, as mechanosensors in strain-induced MSC differentiation. The strain-induced synthesis of BMP2 was found to be reduced by inhibitors of the kinases, ERK, p38, and PI3 kinase. Additionally, mechanical strain reduced the rate of MSC proliferation. The identification of the mechanical control of MSC proliferation and the molecular link between mechanical stimulation and osteogenic differentiation has consequences for regenerative medicine through the development of a functional tissue engineering approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altman, G. H., R. L. Horan, I. Martin, J. Farhadi, P. R. Stark, V. Volloch, J. C. Richmond, G. Vunjak-Novakovic, and D. L. Kaplan. Cell differentiation by mechanical stress. FASEB J. 16(2):270–272, 2002.

    PubMed  CAS  Google Scholar 

  2. Bae, J. S., S. Gutierrez, R. Narla, J. Pratap, R. Devados, A. J. van Wijnen, J. L. Stein, G. S. Stein, J. B. Lian, and A. Javed. Reconstitution of Runx2/Cbfa1-null cells identifies a requirement for BMP2 signaling through a Runx2 functional domain during osteoblast differentiation. J. Cell. Biochem. 100(2):434–449, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Brighton, C. T., B. Strafford, S. B. Gross, D. F. Leatherwood, J. L. Williams, and S. R. Pollack. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Joint Surg. Am. 73(3):320–331, 1991.

    PubMed  CAS  Google Scholar 

  4. Bruder, S. P., D. J. Fink, and A. I. Caplan. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem. 56(3):283–294, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Caetano-Lopes, J., H. Canhao, and J. E. Fonseca. Osteoblasts and bone formation. Acta Reumatol. Port. 32(2):103–110, 2007.

    PubMed  Google Scholar 

  6. Caplan, A. I. Bone development and repair. Bioessays 6(4):171–175, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Chao, E. Y., and N. Inoue. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur. Cell. Mater. 6:72–84, 2003; discussion 84–5.

    PubMed  Google Scholar 

  8. Charras, G. T., B. A. Williams, S. M. Sims, and M. A. Horton. Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys. J. 87(4):2870–2884, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Danciu, T. E., R. M. Adam, K. Naruse, M. R. Freeman, and P. V. Hauschka. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 536(1–3):193–197, 2003.

    Article  PubMed  CAS  Google Scholar 

  10. Ducy, P., C. Desbois, B. Boyce, G. Pinero, B. Story, C. Dunstan, E. Smith, J. Bonadio, S. Goldstein, C. Gundberg, A. Bradley, and G. Karsenty. Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Ducy, P., R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89(5):747–754, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Farrell, E., F. J. O’Brien, P. Doyle, J. Fischer, I. Yannas, B. A. Harley, B. O’Connell, P. J. Prendergast, and V. A. Campbell. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 12(3):459–468, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Franceschi, R. T., and G. Xiao. Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88(3):446–454, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Friedl, G., H. Schmidt, I. Rehak, G. Kostner, K. Schauenstein, and R. Windhager. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: Transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthritis Cartilage 15(11):1293–1300, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Gallea, S., F. Lallemand, A. Atfi, G. Rawadi, V. Ramez, S. Spinella-Jaegle, S. Kawai, C. Faucheu, L. Huet, R. Baron, and S. Roman-Roman. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 28(5):491–498, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Ge, C., G. Xiao, D. Jiang, and R. T. Franceschi. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176(5):709–718, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Ghazanfari, S., M. Tafazzoli-Shadpour, and M. A. Shokrgozar. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem. Biophys. Res. Commun. 388(3):601–605, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Ghosh-Choudhury, N., S. L. Abboud, R. Nishimura, A. Celeste, L. Mahimainathan, and G. G. Choudhury. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J. Biol. Chem. 277(36):33361–33368, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Gross, T. S., S. L. Poliachik, B. J. Ausk, D. A. Sanford, B. A. Becker, and S. Srinivasan. Why rest stimulates bone formation: A hypothesis based on complex adaptive phenomenon. Exerc. Sport Sci. Rev. 32(1):9–13, 2004.

    Article  PubMed  Google Scholar 

  20. Hall, B. K., and T. Miyake. All for one and one for all: Condensations and the initiation of skeletal development. Bioessays 22(2):138–147, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Hamilton, D. W., T. M. Maul, and D. A. Vorp. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications. Tissue Eng. 10(3–4):361–369, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Hipskind, R. A., and G. Bilbe. MAP kinase signaling cascades and gene expression in osteoblasts. Front. Biosci. 3:d804–d816, 1998.

    PubMed  CAS  Google Scholar 

  23. Jagodzinski, M., M. Drescher, J. Zeichen, S. Hankemeier, C. Krettek, U. Bosch, and M. van Griensven. Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur. Cell. Mater. 7:35–41, 2004; discussion 41.

    PubMed  CAS  Google Scholar 

  24. Jaiswal, R. K., N. Jaiswal, S. P. Bruder, G. Mbalaviele, D. R. Marshak, and M. F. Pittenger. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275(13):9645–9652, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen, J. H., F. A. Weyts, I. Westbroek, H. Jahr, H. Chiba, H. A. Pols, J. A. Verhaar, J. P. van Leeuwen, and H. Weinans. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J. Cell. Biochem. 93(3):542–551, 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Karsenty, G. The complexities of skeletal biology. Nature 423(6937):316–318, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Kaspar, D., W. Seidl, C. Neidlinger-Wilke, A. Beck, L. Claes, and A. Ignatius. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J. Biomech. 35(7):873–880, 2002.

    Article  PubMed  Google Scholar 

  28. Kawarizadeh, A., C. Bourauel, W. Gotz, and A. Jager. Early responses of periodontal ligament cells to mechanical stimulus in vivo. J. Dent. Res. 84(10):902–906, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Kearney, E. M., P. J. Prendergast, and V. A. Campbell. Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J. Biomech. Eng. 130(6):061004, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Kent, R. L., J. K. Hoober, and G. T. Cooper. Load responsiveness of protein synthesis in adult mammalian myocardium: Role of cardiac deformation linked to sodium influx. Circ. Res. 64(1):74–85, 1989.

    PubMed  CAS  Google Scholar 

  31. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174(1):168–176, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Kostenuik, P. J., B. P. Halloran, E. R. Morey-Holton, and D. D. Bikle. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells. Am. J. Physiol. 273(6 Pt 1):E1133–E1139, 1997.

    PubMed  CAS  Google Scholar 

  33. Lai, C. F., and S. L. Cheng. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J. Biol. Chem. 277(18):15514–15522, 2002.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, K. S., H. J. Kim, Q. L. Li, X. Z. Chi, C. Ueta, T. Komori, J. M. Wozney, E. G. Kim, J. Y. Choi, H. M. Ryoo, and S. C. Bae. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20(23):8783–8792, 2000.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, W. C., T. M. Maul, D. A. Vorp, J. P. Rubin, and K. G. Marra. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 6(4):265–273, 2007.

    Article  PubMed  Google Scholar 

  36. Mackie, E. J. Osteoblasts: Novel roles in orchestration of skeletal architecture. Int. J. Biochem. Cell Biol. 35(9):1301–1305, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Moretti, M., A. Prina-Mello, A. J. Reid, V. Barron, and P. J. Prendergast. Endothelial cell alignment on cyclically-stretched silicone surfaces. J. Mater. Sci. Mater. Med. 15(10):1159–1164, 2004.

    Article  PubMed  CAS  Google Scholar 

  38. Morey, E. R., and D. J. Baylink. Inhibition of bone formation during space flight. Science 201(4361):1138–1141, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Muller, G. B. Embryonic motility: Environmental influences and evolutionary innovation. Evol. Dev. 5(1):56–60, 2003.

    Article  PubMed  Google Scholar 

  40. Nieponice, A., T. M. Maul, J. M. Cumer, L. Soletti, and D. A. Vorp. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J. Biomed. Mater. Res. A 81(3):523–530, 2007.

    PubMed  Google Scholar 

  41. Nohe, A., S. Hassel, M. Ehrlich, F. Neubauer, W. Sebald, Y. I. Henis, and P. Knaus. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J. Biol. Chem. 277(7):5330–5338, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Owen, T. A., M. Aronow, V. Shalhoub, L. M. Barone, L. Wilming, M. S. Tassinari, M. B. Kennedy, S. Pockwinse, J. B. Lian, and G. S. Stein. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 143(3):420–430, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Park, S. A., J. W. Shin, Y. I. Yang, Y. K. Kim, K. D. Park, J. W. Lee, I. H. Jo, and Y. J. Kim. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials 25(3):527–535, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. Petroff, M. G., S. H. Kim, S. Pepe, C. Dessy, E. Marban, J. L. Balligand, and S. J. Sollott. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat. Cell Biol. 3(10):867–873, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Pratap, J., M. Galindo, S. K. Zaidi, D. Vradii, B. M. Bhat, J. A. Robinson, J. Y. Choi, T. Komori, J. L. Stein, J. B. Lian, G. S. Stein, and A. J. van Wijnen. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63(17):5357–5362, 2003.

    PubMed  CAS  Google Scholar 

  47. Prendergast, P. J., R. Huiskes, and K. Soballe. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30(6):539–548, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Robey, P. G., and J. D. Termine. Human bone cells in vitro. Calcif. Tissue Int. 37(5):453–460, 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Robling, A. G., D. B. Burr, and C. H. Turner. Recovery periods restore mechanosensitivity to dynamically loaded bone. J. Exp. Biol. 204(Pt 19):3389–3399, 2001.

    PubMed  CAS  Google Scholar 

  50. Robling, A. G., F. M. Hinant, D. B. Burr, and C. H. Turner. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17(8):1545–1554, 2002.

    Article  PubMed  Google Scholar 

  51. Rochefort, G. Y., P. Vaudin, N. Bonnet, J. C. Pages, J. Domenech, P. Charbord, and V. Eder. Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: Possibilities of targeting pulmonary artery remodeling via cells therapies? Respir. Res. 6:125, 2005.

    Article  PubMed  CAS  Google Scholar 

  52. Rubin, J., T. C. Murphy, X. Fan, M. Goldschmidt, and W. R. Taylor. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J. Bone Miner. Res. 17(8):1452–1460, 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Sebastine, I. M., and D. J. Williams. The role of mechanical stimulation in engineering of extracellular matrix (ECM). Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3648–3651, 2006.

    Article  PubMed  CAS  Google Scholar 

  54. Shea, J. E., S. C. Miller, D. C. Poole, and J. P. Mattson. Cortical bone dynamics, strength, and densitometry after induction of emphysema in hamsters. J. Appl. Physiol. 95(2):631–634, 2003.

    PubMed  Google Scholar 

  55. Simmons, C. A., S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang, and D. J. Mooney. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36(8):1087–1096, 2003.

    Article  PubMed  Google Scholar 

  56. Song, G., Y. Ju, X. Shen, Q. Luo, Y. Shi, and J. Qin. Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf. B Biointerfaces 58(2):271–277, 2007.

    Article  PubMed  CAS  Google Scholar 

  57. Srinivasan, S., D. A. Weimer, S. C. Agans, S. D. Bain, and T. S. Gross. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17(9):1613–1620, 2002.

    Article  PubMed  Google Scholar 

  58. Suzawa, M., I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, T. Yamauchi, T. Kadowaki, Y. Takeuchi, H. Shibuya, Y. Gotoh, K. Matsumoto, and S. Kato. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK cascade. Nat. Cell Biol. 5(3):224–230, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. Suzuma, K., K. Naruse, I. Suzuma, N. Takahara, K. Ueki, L. P. Aiello, and G. L. King. Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J. Biol. Chem. 275(52):40725–40731, 2000.

    Article  PubMed  CAS  Google Scholar 

  60. Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. van Griensven, M., S. Diederichs, and C. Kasper. Mechanical strain of bone marrow stromal cells induces proliferation and differentiation into osteoblast-like cells. In: Topics in Tissue Engineering, edited by N. R. Ashammakhi and R.L. Reis, 2005 (E-book).

  62. Wang, F. S., C. J. Wang, S. M. Sheen-Chen, Y. R. Kuo, R. F. Chen, and K. D. Yang. Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J. Biol. Chem. 277(13):10931–10937, 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Ward, Jr., D. F., W. A. Williams, N. E. Schapiro, G. L. Weber, S. R. Christy, M. Salt, R. F. Klees, A. Boskey, and G. E. Plopper. Focal adhesion kinase signaling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells. Mol. Cell. Biomech. 4(4):177–188, 2007.

    PubMed  Google Scholar 

  64. Yamaguchi, A., T. Komori, and T. Suda. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21(4):393–411, 2000.

    Article  PubMed  CAS  Google Scholar 

  65. Ziros, P. G., A. P. Gil, T. Georgakopoulos, I. Habeos, D. Kletsas, E. K. Basdra, and A. G. Papavassiliou. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J. Biol. Chem. 277(26):23934–23941, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant under the Program for Research in Third Level Institutions (PRTLI) to the Trinity Centre for Bioengineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Campbell.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearney, E.M., Farrell, E., Prendergast, P.J. et al. Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis. Ann Biomed Eng 38, 1767–1779 (2010). https://doi.org/10.1007/s10439-010-9979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9979-4

Keywords

Navigation