Skip to main content
Log in

The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chemotherapy- or radiotherapy-induced DNA damage activates the Chk1-dependent DNA damage response (DDR) and cell cycle checkpoints to facilitate cell survival. Numerous attempts have been made to identify specific Chk1 inhibitors to enhance the efficiency of chemotherapy or radiotherapy. In this study, we investigated the molecular mechanisms underlying the antitumor activity of LY2603618, a potent and selective small molecule inhibitor of Chk1 protein kinase, in human lung cancer cells. Treatment of cancer cells with LY2603618 caused cell cycle arrest in the G2/M phase. A marked induction of DDR, including the phosphorylation of ATM, Chk2, p53 and histone H2AX, was observed after LY2603618 treatment. LY2603618 inhibited Chk1 autophosphorylation (S296 Chk1) and increased DNA damage-mediated Chk1 phosphorylation (S345 Chk1). In addition, LY2603618-treated lung cancer cells transitioned from LC3-I to LC3-II, a hallmark of autophagy. Blocking autophagy with chloroquine (CQ) further enhanced LY2603618′s inhibitory effect on cell viability/proliferation. LY2603618 also significantly increased p38 and c-Jun N-terminal kinase (JNK) phosphorylation. Pretreatment with the JNK inhibitor reduced cleavage of caspase-3 and PARP levels in LY2603618-treated cells. These results suggest the following: (i) the biological consequences of LY2603618 in lung cancer cells is associated with both inhibition of Chk1 phosphorylation on S296 and activation of the DNA damage response network; and (ii) the anticancer property of LY2603618 might be increased by inhibiting autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol 5:a012575

    Article  PubMed  Google Scholar 

  2. Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LH (2011) DNA damage response and transcription. DNA Repair (Amst) 10:743–750

    Article  CAS  Google Scholar 

  3. Jun DW, Jeong YS, Kim HJ, Jeong KC, Kim S, Lee CH (2012) Characterization of DDRI-18 (3,3′-(1H,3′H-5,5′-bibenzo[d]imidazole-2,2′-diyl)dianiline), a novel small molecule inhibitor modulating the DNA damage response. Br J Pharmacol 167:141–150

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Tao Y, Leteur C, Yang C et al (2009) Radiosensitization by Chir-124, a selective CHK1 inhibitor: effects of p53 and cell cycle checkpoints. Cell Cycle 8:1196–1205

    Article  CAS  PubMed  Google Scholar 

  5. Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13:579–590

    Article  CAS  PubMed  Google Scholar 

  6. Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    Article  CAS  PubMed  Google Scholar 

  7. Enomoto M, Goto H, Tomono Y et al (2009) Novel positive feedback loop between Cdk1 and Chk1 in the nucleus during G2/M transition. J Biol Chem 284:34223–34230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N (2004) Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J 23:3386–3396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chinna Reddy G, Balasubramanyam P, Salvanna N, Sreenivasulu Reddy T, Das B (2012) The first stereoselective total synthesis of (Z)-cryptomoscatone D2, a natural G2 checkpoint inhibitor. Bioorg Med Chem Lett 22:2415–2417

    Article  CAS  PubMed  Google Scholar 

  10. Jiang X, Zhao B, Britton R et al (2004) Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide. Mol Cancer Ther 3:1221–1227

    CAS  PubMed  Google Scholar 

  11. Wang XQ, Ongkeko WM, Chen L et al (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52:528–539

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez-Bravo V, Guaita-Esteruelas S, Salvador N, Bachs O, Agell N (2007) Different S/M Checkpoint Responses of Tumor and Non Tumor Cell Lines to DNA Replication Inhibition. Cancer Res 67:11648–11656

    Article  PubMed  Google Scholar 

  13. Dai Y, Chen S, Kmieciak M et al (2013) The novel Chk1 inhibitor MK-8776 sensitizes human leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair. Mol Cancer Ther 12:878–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Borst GR, McLaughlin M, Kyula JN et al (2013) Targeted radiosensitization by the Chk1 inhibitor SAR-020106. Int J Radiat Oncol Biol Phys 85:1110–1118

    Article  CAS  PubMed  Google Scholar 

  15. Weiss GJ, Donehower RC, Iyengar T et al (2013) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Invest New Drugs 31:136–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. King C, Diaz H, Barnard D et al (2014) Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs 32:213–226

    Article  CAS  PubMed  Google Scholar 

  17. Wei Y, Mizzen CA, Cook RG, Gorovsky MA, Allis CD (1998) Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA 95:7480–7484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Coumar MS, Tsai FY, Kanwar JR, Sarvagalla S, Cheung CH (2013) Treat cancers by targeting survivin: just a dream or future reality? Cancer Treat Rev 39:802–811

    Article  CAS  PubMed  Google Scholar 

  19. Hu F, Han J, Zhai B et al (2014) Blocking autophagy enhances the apoptosis effect of bufalin on human hepatocellular carcinoma cells through endoplasmic reticulum stress and JNK activation. Apoptosis 19:210–223

    Article  CAS  PubMed  Google Scholar 

  20. Moruno-Manchón JF, Pérez-Jiménez E, Knecht E (2013) Glucose induces autophagy under starvation conditions by a p38 MAPK-dependent pathway. Biochem J 449:497–506

    Article  PubMed  Google Scholar 

  21. Notte A, Ninane N, Arnould T, Michiels C (2013) Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: role of autophagy and JNK activation. Cell Death Dis 4:e638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Xiao Y, Ramiscal J, Kowanetz K et al (2013) Identification of preferred chemotherapeutics for combining with a CHK1 inhibitor. Mol Cancer Ther 12:2285–2295

    Article  CAS  PubMed  Google Scholar 

  23. Ng CP, Lee HC, Ho CW et al (2004) Differential mode of regulation of the checkpoint kinases CHK1 and CHK2 by their regulatory domains. J Biol Chem 279:8808–8819

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Lui VC, Poon RT, Lu P, Poon RY (2009) DNA damage mediated s and g(2) checkpoints in human embryonal carcinoma cells. Stem Cells 27:568–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Clarke CA, Clarke PR (2005) DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. Biochem J 388:705–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M (2010) 14-3-3 gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 29:2802–2812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Parsels LA, Qian Y, Tanska DM et al (2011) Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition. Clin Cancer Res 17:3706–3715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Riesterer O, Matsumoto F, Wang L et al (2011) A novel Chk inhibitor, XL-844, increases human cancer cell radiosensitivity through promotion of mitotic catastrophe. Invest New Drugs 29:514–522

    Article  CAS  PubMed  Google Scholar 

  29. Sharma A, Singh K, Almasan A (2012) Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol 920:613–626

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Morsbach F, Sander D et al (2011) EGF receptor inhibition radiosensitizes NSCLC cells by inducing senescence in cells sustaining DNA double-strand breaks. Cancer Res 71:6261–6269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY (2005) Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65:2795–2803

    Article  CAS  PubMed  Google Scholar 

  32. Chifenti B, Locci MT, Lazzeri G et al (2013) Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy. Clin Exp Reprod Med 40:33–37

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chu PM, Chen LH, Chen MT et al (2012) Targeting autophagy enhances BO-1051-induced apoptosis in human malignant glioma cells. Cancer Chemother Pharmacol 69:621–633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81272683 to Feng-Ze Wang, No. 81271275 to Bao-Liang Sun).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Guo Zhang or Bao-Liang Sun.

Additional information

Feng-Ze Wang and Hong-rong Fei have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, FZ., Fei, Hr., Cui, YJ. et al. The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 19, 1389–1398 (2014). https://doi.org/10.1007/s10495-014-1010-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1010-3

Keywords

Navigation