Skip to main content

Advertisement

Log in

Targeting autophagy enhances BO-1051-induced apoptosis in human malignant glioma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

BO-1051 is an N-mustard derivative that is conjugated with DNA-affinic 9-anilinoacridine. Since BO-1051 was reported to have strong anticancer activity, we investigated the effect and underlying mechanism of BO-1051 in human glioma cell lines.

Methods

Human glioma cell lines U251MG and U87MG were studied with BO-1051 or the combination of BO-1051 and autophagic inhibitors. Growth inhibition was assessed by MTT assay. Apoptosis was measured by annexin V staining followed by flow cytometry and immunoblotting for apoptosis-related molecules. Induction of autophagy was detected by acridine orange labeling, electron microscopy, LC3 localization and its conversion. Transfection of shRNA was used to determine the involvement of Beclin1 in apoptotic cell death.

Results

MTT assay showed that BO-1051 suppressed the viability of four glioma cell lines (U251MG, U87MG, GBM-3 and DBTRG-05MG) in a dose-dependent manner. The IC50 values of BO-1051 for the glioma cells were significantly lower than the values for primary neurons cultures and normal fibroblast cells. Moreover, BO-1051 not only induced apoptotic cell death, but also enhanced autophagic flux via inhibition of Akt/mTOR and activation of Erk1/2. Importantly, suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly increased BO-1051-induced apoptotic cell death in U251MG and U87MG cells. In addition, the proportion of apoptotic cells after BO-1051 treatment was enhanced by co-treatment with shRNA against Beclin1.

Conclusions

BO-1051 induced both apoptosis and autophagy, and inhibition of autophagy significantly augmented the cytotoxic effect of BO-1051. Thus, a combination of BO-1051 and autophagic inhibitors offers a potentially new therapeutic modality for the treatment of malignant glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  2. Rajski SR, Williams RM (1998) DNA cross-linking agents as antitumor drugs. Chem Rev 98:2723–2796

    Article  PubMed  CAS  Google Scholar 

  3. Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA et al (1996) Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of 1, 3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci USA 93:206–210

    Article  PubMed  CAS  Google Scholar 

  4. Kapuriya N, Kapuriya K, Zhang X, Chou TC, Kakadiya R et al (2008) Synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilinoacridines via a urea linkage. Bioorg Med Chem 16:5413–5423

    Article  PubMed  CAS  Google Scholar 

  5. Su TL, Lin YW, Chou TC, Zhang X, Bacherikov VA et al (2006) Potent antitumor 9-anilinoacridines and acridines bearing an alkylating N-mustard residue on the acridine chromophore: synthesis and biological activity. J Med Chem 49:3710–3718

    Article  PubMed  CAS  Google Scholar 

  6. Su TL (2002) Development of DNA topoisomerase II-mediated anticancer agents, 3-(9-acridinylamino)-5-hydroxymethylanilines (AHMAs) and related compounds. Curr Med Chem 9:1677–1688

    PubMed  CAS  Google Scholar 

  7. Chu PM, Chiou SH, Su TL, Lee YJ, Chen LH et al (2011) Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response. Radiat Oncol 6:7

    Article  PubMed  CAS  Google Scholar 

  8. Chen S, Rehman SK, Zhang W, Wen A, Yao L et al (2010) Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta 1806:220–229

    PubMed  CAS  Google Scholar 

  9. Tiwari M, Bajpai VK, Sahasrabuddhe AA, Kumar A, Sinha RA et al (2008) Inhibition of N-(4-hydroxyphenyl)retinamide-induced autophagy at a lower dose enhances cell death in malignant glioma cells. Carcinogenesis 29:600–609

    Article  PubMed  CAS  Google Scholar 

  10. Shingu T, Fujiwara K, Bogler O, Akiyama Y, Moritake K et al (2009) Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. Int J Cancer 124:1060–1071

    Article  PubMed  CAS  Google Scholar 

  11. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    Article  PubMed  CAS  Google Scholar 

  12. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F et al (2009) The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 125:717–722

    Article  PubMed  CAS  Google Scholar 

  13. Liu WT, Lin CH, Hsiao M, Gean PW (2011) Minocycline inhibits the growth of glioma by inducing autophagy. Autophagy 7:166–175

    Article  PubMed  Google Scholar 

  14. Alonso MM, Jiang H, Yokoyama T, Xu J, Bekele NB et al (2008) Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16:487–493

    Article  PubMed  CAS  Google Scholar 

  15. Chao AC, Hsu YL, Liu CK, Kuo PL (2011) alpha-Mangostin, a dietary xanthone, induces autophagic cell death by activating the AMP-activated protein kinase pathway in glioblastoma cells. J Agric Food Chem 59:2086–2096

    Article  PubMed  CAS  Google Scholar 

  16. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  PubMed  CAS  Google Scholar 

  17. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    Article  PubMed  CAS  Google Scholar 

  18. Fu YS, Lin YY, Chou SC, Tsai TH, Kao LS et al (2008) Tetramethylpyrazine inhibits activities of glioma cells and glutamate neuro-excitotoxicity: potential therapeutic application for treatment of gliomas. Neuro Oncol 10:139–152

    Article  PubMed  CAS  Google Scholar 

  19. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    PubMed  CAS  Google Scholar 

  20. Chen LH, Loong CC, Su TL, Lee YJ, Chu PM et al (2011) Autophagy inhibition enhances apoptosis triggered by BO-1051, an N-mustard derivative, and involves the ATM signaling pathway. Biochem Pharmacol 81:594–605

    Article  PubMed  CAS  Google Scholar 

  21. Jinno-Oue A, Shimizu N, Hamada N, Wada S, Tanaka A et al (2010) Irradiation with carbon ion beams induces apoptosis, autophagy, and cellular senescence in a human glioma-derived cell line. Int J Radiat Oncol Biol Phys 76:229–241

    Article  PubMed  CAS  Google Scholar 

  22. Kanzawa T, Kondo Y, Ito H, Kondo S, Germano I (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108

    PubMed  CAS  Google Scholar 

  23. Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S et al (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607

    Article  PubMed  CAS  Google Scholar 

  24. Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP (2010) Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro Oncol 12:328–340

    Article  PubMed  CAS  Google Scholar 

  25. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  PubMed  CAS  Google Scholar 

  26. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  27. Shinojima N, Yokoyama T, Kondo Y, Kondo S (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–637

    PubMed  CAS  Google Scholar 

  28. Scarlatti F, Granata R, Meijer AJ, Codogno P (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ 16:12–20

    Article  PubMed  CAS  Google Scholar 

  29. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  30. Levy JM, Thorburn A (2011) Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 131:130–141

    Google Scholar 

  31. Das A, Banik NL, Patel SJ, Ray SK (2004) Dexamethasone protected human glioblastoma U87MG cells from temozolomide induced apoptosis by maintaining Bax:Bcl-2 ratio and preventing proteolytic activities. Mol Cancer 3:36

    Article  PubMed  Google Scholar 

  32. Haga N, Fujita N, Tsuruo T (2005) Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Sci 96:825–833

    Article  PubMed  CAS  Google Scholar 

  33. Qian W, Liu J, Jin J, Ni W, Xu W (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 31:329–339

    Article  PubMed  Google Scholar 

  34. Zhang H, Kong X, Kang J, Su J, Li Y et al (2009) Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110:376–388

    Article  PubMed  CAS  Google Scholar 

  35. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    Article  PubMed  CAS  Google Scholar 

  36. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410

    PubMed  CAS  Google Scholar 

  37. Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66:5828–5835

    Article  PubMed  CAS  Google Scholar 

  38. Harhaji-Trajkovic L, Vilimanovich U, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V (2009) AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumor cells. J Cell Mol Med 13:3644–3654

    Google Scholar 

  39. Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337–343

    PubMed  CAS  Google Scholar 

  40. Dewaele M, Maes H, Agostinis P (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6:838–854

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the National Science Council (NSC97-3111-B-075-001-MY3, NSC98-2320-B-075-003-MY3, NSC99-2628-B- 016-014-MY3 and NSC99-2811-B-016-007-MY3), Taipei Veterans General Hospital (V97B1-006 and E1-008, F-001), Tri-Service General Hospital (TSGH-C100-047), the Joint Projects of UTVGH (VGHUST 98-p1-01), Yen-Tjing-Ling Medical Foundation (96/97/98), National Yang-Ming University (Ministry of Education, Aim for the Top University Plan) & Genomic Center Project, Institute of Biological medicine, Academia Sinica (IBMS-CRC99-p01), and Center of Excellence for Cancer Research at Taipei Veterans General Hospital (DOH99-TD-C-111-007), Taiwan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsin-I Ma or Shih-Hwa Chiou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 46 kb)

Supplementary material 2 (TIFF 3457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, PM., Chen, LH., Chen, MT. et al. Targeting autophagy enhances BO-1051-induced apoptosis in human malignant glioma cells. Cancer Chemother Pharmacol 69, 621–633 (2012). https://doi.org/10.1007/s00280-011-1747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1747-0

Keywords

Navigation