Skip to main content

Advertisement

Log in

Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Interference with DNA damage checkpoints has been demonstrated preclinically to be a highly effective means of increasing the cytotoxicity of a number of DNA-damaging cancer therapies. Cell cycle arrest at these checkpoints protects injured cells from apoptotic cell death until DNA damage can be repaired. In the absence of functioning DNA damage checkpoints, cells with damaged DNA may proceed into premature mitosis followed by cell death. A key protein kinase involved in activating and maintaining the S and G2/M checkpoints is Chk1. Pharmacological inhibition of Chk1 in the absence of p53 functionality leads to abrogation of DNA damage checkpoints and has been shown preclinically to enhance the activity of many standard of care chemotherapeutic agents. LY2603618 is a potent and selective small molecule inhibitor of Chk1 protein kinase activity in vitro (IC50 = 7 nM) and the first selective Chk1 inhibitor to enter clinical cancer trials. Treatment of cells with LY2603618 produced a cellular phenotype similar to that reported for depletion of Chk1 by RNAi. Inhibition of intracellular Chk1 by LY2603618 results in impaired DNA synthesis, elevated H2A.X phosphorylation indicative of DNA damage and premature entry into mitosis. When HeLa cells were exposed to doxorubicin to induce a G2/M checkpoint arrest, subsequent treatment with LY2603618 released the checkpoint, resulting in cells entering into metaphase with poorly condensed chromosomes. Consistent with abrogation of the Chk1 and p53-dependent G2/M checkpoint, mutant TP53 HT-29 colon cancer cells were more sensitive to gemcitabine when also treated with LY2603618, while wild-type TP53 HCT116 cells were not sensitized by LY2603618 to gemcitabine. Treatment of Calu-6 human mutant TP53 lung cancer cell xenografts with gemcitabine resulted in a stimulation of Chk1 kinase activity that was inhibited by co-administration of LY2603618. By all criteria, LY2603618 is a highly effective inhibitor of multiple aspects of Chk1 biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res Off J Am Assoc Cancer Res 16(2):376–383. doi:10.1158/1078-0432.CCR-09-1029

    Article  CAS  Google Scholar 

  2. Carrassa L, Damia G (2011) Unleashing Chk1 in cancer therapy. Cell Cycle 10(13):2121–2128

    Article  CAS  PubMed  Google Scholar 

  3. Nam EA, Cortez D (2011) ATR signalling: more than meeting at the fork. Biochem J 436(3):527–536. doi:10.1042/BJ20102162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32(5):308–316. doi:10.1016/j.tips.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  5. Loffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Kramer A (2006) Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 5(21):2543–2547

    Article  PubMed  Google Scholar 

  6. Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280(47):39246–39252. doi:10.1074/jbc.M505009200

    Article  CAS  PubMed  Google Scholar 

  7. Ge XQ, Blow JJ (2010) Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol 191(7):1285–1297. doi:10.1083/jcb.201007074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maya-Mendoza A, Petermann E, Gillespie DA, Caldecott KW, Jackson DA (2007) Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26(11):2719–2731. doi:10.1038/sj.emboj.7601714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Petermann E, Woodcock M, Helleday T (2010) Chk1 promotes replication fork progression by controlling replication initiation. Proc Nat Acad Sci U S A 107(37):16090–16095. doi:10.1073/pnas.1005031107

    Article  CAS  Google Scholar 

  10. Forment JV, Blasius M, Guerini I, Jackson SP (2011) Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PloS one 6(8):e23517. doi:10.1371/journal.pone.0023517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694. doi:10.1093/nar/gkn550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD (1999) Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97(1):99–109

    Article  CAS  PubMed  Google Scholar 

  13. Tang J, Erikson RL, Liu X (2006) Checkpoint kinase 1 (Chk1) is required for mitotic progression through negative regulation of polo-like kinase 1 (Plk1). Proc Nat Acad Sci U S A 103(32):11964–11969. doi:10.1073/pnas.0604987103

    Article  CAS  Google Scholar 

  14. Keegan KS (2002) Heteroaryl urea Chk1 inhibitors for use as radiosensitizers and chemosensitizers. PCT/US2002/006452

  15. Diaz F (2006) Heteroaryl urea derivatives useful for inhibiting Chk1. US Patent PCT/US2006/011584

  16. Low J, Shuguang H, Dowless M, Blosser W, Vincent T, Davis S, Hodson J, Koller E, Marcusson E, Blanchard K, Stancato L (2007) High-content imaging analysis of the knockdown effects of validated siRNAs and antisense oligonucleotides. J Biomol Screen 12(6):775–788. doi:10.1177/1087057107302675

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Current protocols in protein science/editorial board, John E Coligan [et al.] Chapter 10:Unit 10 11 11–44. doi:10.1002/0471140864.ps1001s68

  18. Li G, Hasvold LA, Tao ZF, Wang GT, Gwaltney SL 2nd, Patel J, Kovar P, Credo RB, Chen Z, Zhang H, Park C, Sham HL, Sowin T, Rosenberg SH, Lin NH (2006) Synthesis and biological evaluation of 1-(2,4,5-trisubstituted phenyl)-3-(5-cyanopyrazin-2-yl)ureas as potent Chk1 kinase inhibitors. Bioorg Med Chem Lett 16(8):2293–2298. doi:10.1016/j.bmcl.2006.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Boyle RGI, Hassan J, Cherry M (2003) Diarylurea compounds and derivatives as Chk-1 inhibitors for the treatment of cancer. Israel Patent

  20. Diaz F, Farouz FS, Holcomb R, Kesicki EA, Ooi HC, Rudolph A, Stappenbeck F, Thorsett E, Gaudino JJ, Fischer KL, Cook AW (2006) Heteroaryl urea derivatives useful for inhibiting Chkl. Israel Patent, 5 October 2006

  21. Keegan KS, Kesicki EA, Gaudino JJ, Cook AW, Cowen SD, Burgess LE (2002) Aryl and heteroaryl urea Chk1 inhibitors for use as radiosensitizers and chemosensitizers. Israel Patent, 12.09.2002

  22. Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM (2009) The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Nat Acad Sci U S A 106(13):5159–5164. doi:10.1073/pnas.0806671106

    Article  CAS  Google Scholar 

  23. Davies KD, Humphries MJ, Sullivan FX, von Carlowitz I, Le Huerou Y, Mohr PJ, Wang B, Blake JF, Lyon MA, Gunawardana I, Chicarelli M, Wallace E, Gross S (2011) Single-agent inhibition of Chk1 is antiproliferative in human cancer cell lines in vitro and inhibits tumor xenograft growth in vivo. Oncol Res 19(7):349–363

    Article  PubMed  Google Scholar 

  24. Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Nat Acad Sci U S A 90(9):3988–3992

    Article  CAS  Google Scholar 

  25. Groth A, Lukas J, Nigg EA, Sillje HH, Wernstedt C, Bartek J, Hansen K (2003) Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO J 22(7):1676–1687. doi:10.1093/emboj/cdg151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tao ZF, Lin NH (2006) Chk1 inhibitors for novel cancer treatment. Anti-Cancer Agents Med Chem 6(4):377–388

    Article  CAS  Google Scholar 

  27. Chen T, Stephens PA, Middleton FK, Curtin NJ (2012) Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today 17(5–6):194–202. doi:10.1016/j.drudis.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  28. Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS, Maybaum J (2009) Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 8(1):45–54. doi:10.1158/1535-7163.MCT-08-0662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65(15):6835–6842. doi:10.1158/0008-5472.CAN-04-2246

    Article  CAS  PubMed  Google Scholar 

  30. Matthews DJ, Yakes FM, Chen J, Tadano M, Bornheim L, Clary DO, Tai A, Wagner JM, Miller N, Kim YD, Robertson S, Murray L, Karnitz LM (2007) Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6(1):104–110

    Article  CAS  PubMed  Google Scholar 

  31. Ross WE, Bradley MO (1981) DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. Biochim Biophys Acta 654(1):129–134

    Article  CAS  PubMed  Google Scholar 

  32. Brooks K, Oakes V, Edwards B, Ranall M, Leo P, Pavey S, Pinder A, Beamish H, Mukhopadhyay P, Lambie D, Gabrielli B (2012) A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene. doi:10.1038/onc.2012.72

    PubMed Central  Google Scholar 

  33. Weiss GJ, Donehower RC, Iyengar T, Ramanathan RK, Lewandowski K, Westin E, Hurt K, Hynes SM, Anthony SP, McKane S (2012) Phase I dose-escalation study to examine the safety and tolerability of LY2603618, a checkpoint 1 kinase inhibitor, administered 1 day after pemetrexed 500 mg/m(2) every 21 days in patients with cancer. Investig New Drugs. doi:10.1007/s10637-012-9815-9

    Google Scholar 

Download references

Acknowledgements

We would like to recognize the essential contributions of the Chk1 biology and medicinal chemistry team members from Icos Pharmaceuticals and Array BioPharma: Phyllis Goldman, Laurence Burgess, Erik Christenson, Darcey Clark, Adam Cook, Scott Cowen, Jeff Dantzler, Frank Diaz, Heather Douanpanya, Francine Farouz, Kimba Fischer, John Gaudino, Ryan Holcomb, Angela Judkins, Adam Kashishian, Ed Kesicki, Kim McCaw, Harch Ooi, Vanessa Rada, Fuqiang Ruan, Alex Rudolph, Frank Stappenbeck, Janelle Taylor, Gene Thorsett, Jen Treiberg, Margaret Weidner and Steve White. We would also like to thank Eric Westin and Aimee Bence for constant intellectual input.

Conflict of interests

The authors, Constance King, Henry Diaz, Darlene Barnard, David Barda, David Clawson, Wayne Blosser, Karen Cox, Sherry Guo and Mark Marshall are all employees of the Eli Lilly Company, which supports the development of LY2603618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Marshall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 501 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, C., Diaz, H., Barnard, D. et al. Characterization and preclinical development of LY2603618: a selective and potent Chk1 inhibitor. Invest New Drugs 32, 213–226 (2014). https://doi.org/10.1007/s10637-013-0036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-0036-7

Keywords

Navigation