Skip to main content
Log in

Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 12 October 2017

This article has been updated

Abstract

The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serve as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 12 October 2017

    In the original publication of the article, the below mentioned errors have appeared. The correct text is provided in this erratum, In the abstract section, the sentence “This dataset serve” should be replaced as “This dataset serves”. Also, the reference “Basso TO, Gomes FS, Lopes ML, et al (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105:169–177. doi: 10.1007/s10482-013-0063-6 ” should be replaced as “Basso TO, Dario MG, Tonso A, Stambuk BU, Gombert AK (2010) Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Biotechnol Lett 32:973–977. doi: 10.1007/s10529-010-0248-2 ”. Finally, in the Table 2 footnote, “according to (Heijnen 1981)” should be replaced as “according to Heijnen (1981)”.

References

  • Basso TO, Gomes FS, Lopes ML, et al (2014) Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation. Antonie Van Leeuwenhoek 105:169–177. doi:10.1007/s10482-013-0063-6

    Article  CAS  PubMed  Google Scholar 

  • Becerra M, Tarrío N, González-Siso MI, Cerdán ME (2004) Genome-wide analysis of Kluyveromyces lactis in wild-type and rag 2 mutant strains. Genome 47:970–978. doi:10.1139/g04-039

    Article  CAS  PubMed  Google Scholar 

  • Blondeau K, Boutur O, Boze H, Moulin G, Galzy P (1993) Influence of culture conditions on the production of heterologous interleukin 1? by Kluyveromyces lactis. Biotechnol Tech 7:609–614. doi:10.1007/BF00156338

    Article  CAS  Google Scholar 

  • Bonekamp FJ, Oosterom J (1994) On the safety of Kluyveromyces lactis—A review. Appl Microbiol Biotechnol 41:1–3

    Article  Google Scholar 

  • Breunig K, Bolotin-Fukuhara M, Bianchi M, Bourgarel D, Falcone C, Ferrero I, Frontali L, Goffrini P, Krijger J, Mazzoni C, Milkowski C, Steensma H, Wésolowski-Louvel M, Zeeman A (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Technol 26:771–780. doi:10.1016/S0141-0229(00)00170-8

    Article  CAS  PubMed  Google Scholar 

  • Carnicer M, Baumann K, Töplitz I, Sánchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J (2009) Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Fact 8:65. doi:10.1186/1475-2859-8-65

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark-Walker D (2006) Eighteenth biology of Kluyveromyces meeting, Bratislava, Slovakia, 6 August 2005. FEMS Yeast Res 6:141–141. doi:10.1111/j.1567-1364.2005.00044.x

    Article  CAS  PubMed  Google Scholar 

  • Cooney MJ, Marison IW, van Gulik WM, von Stockar U (1996) Calorimetric and stoichiometric analysis of growth of Kluyveromices fragilis in continuous culture: nitrogen limitation imposed upon carbon-limited growth. Appl Microbiol Biotechnol 44:643–653. doi:10.1007/BF00172498

    Article  CAS  Google Scholar 

  • Dias O, Pereira R, Gombert AK, Ferreira EC, Rocha I (2014) iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis. Biotechnol J 9:776–790. doi:10.1002/biot.201300242

    Article  CAS  PubMed  Google Scholar 

  • Dickson RC, Barr K (1983) Characterization of lactose transport in Kluyveromyces lactis. J Bacteriol 154:1245–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson RC, Markin JS (1980) Physiological studies of beta-galactosidase induction in Kluyveromyces lactis. J Bacteriol 142:777–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson RC, Dickson LR, Markin JS (1979) Purification and properties of an inducible beta-galactosidase isolated from the yeast Kluyveromyces lactis. J Bacteriol 137:51–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duboc P, Schill N, Menoud L, van Gulik W, von Stockar U (1995) Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction. J Biotechnol 43:145–158

    Article  CAS  PubMed  Google Scholar 

  • Dujon B, Sherman DJ, Fischer G, Durrens P, Casaregola S, Lafontaine I, de Montigny J, Marck C, Neuveglise C, Talla E et al (2004) Genome evolution in yeasts. Nature 430:435–444

    Article  Google Scholar 

  • Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149. doi:10.1073/pnas.242624799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci 96:9721–9726. doi:10.1073/pnas.96.17.9721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354. doi:10.1007/s00253-008-1458-6

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Boekhout T (2007) Thematic issue on Kluyveromyces lactis. FEMS Yeast Res 7:641–641. doi:10.1111/j.1567-1364.2007.00277.x

    Article  CAS  Google Scholar 

  • Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11:180–186

    Article  CAS  PubMed  Google Scholar 

  • González–Siso M, Freire–Picos M, Ramil E, González-Domínguez M, Rodríguez Torres A, Cerdán M (2000) Respirofermentative metabolism in Kluyveromyces lactis. Enzyme Microb Technol 26:699–705. doi:10.1016/S0141-0229(00)00161-7

    Article  PubMed  Google Scholar 

  • González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 8:46. doi:10.1186/1475-2859-8-46

    Article  PubMed  PubMed Central  Google Scholar 

  • Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. doi:10.1371/journal.pgen.1000303

    Google Scholar 

  • Heijnen JJ (1981) Application of the macroscopic electric charge balance in fermentation modeling. Biotechnol Bioeng 23:1133–1144. doi:10.1002/bit.260230520

    Article  CAS  Google Scholar 

  • Hellinga C, Romein B (1992) MACROBAL: A Program for Robust Data Reconciliation and Gross Error Detection. In: Model Control Biotech Process. pp 459–460

  • Hensing MCM, Bangma KA, Raamsdonk L, de Hulster E, van Dijken JP, Pronk JT (1995) Effects of cultivation conditions on the production of heterologous alpha-galactosidase production by Kluyveromyces lactis

  • Hoekstra R, Groeneveld P, van Verseveld HW, Stouthamer AH, Planta RJ (1994) Transcription regulation of ribosomal protein genes at different growth rates in continuous cultures of Kluyveromyces yeasts. Yeast 10:637–651. doi:10.1002/yea.320100508

    Article  CAS  PubMed  Google Scholar 

  • Inchaurrondo VAA, Flores MVV, Voget CEE (1998) Growth and beta-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J Ind Microbiol Biotechnol 20:291–298. doi:10.1038/sj.jim.2900526

    Article  CAS  Google Scholar 

  • Jansen MLA, Diderich JA, Mashego M, Hassane A, de Winde JH, Daran-Lapujade P, Pronk JT (2005) Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity. Microbiology 151:1657–1669. doi:10.1099/mic.0.27577-0

    Article  CAS  PubMed  Google Scholar 

  • Kiers J, Zeeman A-MM, Luttik M, Thiele C, Castrillo JI, Steensma HY, Van Dijken JP, Pronk JT (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14:459–469. doi:10.1002/(SICI)1097-0061(19980330)14:5<459:AID-YEA248>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245. doi:10.1016/S1567-1356(03)00175-2

    Article  CAS  PubMed  Google Scholar 

  • Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26. doi:10.1016/j.fbr.2010.01.001

    Article  Google Scholar 

  • Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75:334–344. doi:10.1002/bit.10054

    Article  CAS  PubMed  Google Scholar 

  • Leite FCB, Basso TO, Pita WB, Gombert AK, Simões DA, de Morais Júnior MA (2012) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res. doi:10.1111/j.1567-1364.2012.12007.x

    PubMed  Google Scholar 

  • Li Y-F, Bao W-G (2007) Why do some yeast species require niacin for growth? Different modes of NAD synthesis. FEMS Yeast Res 7:657–664. doi:10.1111/j.1567-1364.2007.00231.x

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ (2003) Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng 83:395–399. doi:10.1002/bit.10683

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, Jansen MLA, Vinke JL, Van Gulik WM, Heijnen JJ (2005) Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. FEMS Yeast Res 5:419–430. doi:10.1016/j.femsyr.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  • Minkevich IG, Dedyukhina EG, Chistyakova TI (2010) The effect of lipid content on the elemental composition and energy capacity of yeast biomass. Appl Microbiol Biotechnol 88:799–806. doi:10.1007/s00253-010-2766-1

    Article  CAS  PubMed  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Oliveira GA, Tahara EB, Gombert AK, Barros MH, Kowaltowski AJ (2008) Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J Bioenerg Biomembr 40:381–388. doi:10.1007/s10863-008-9159-5

    Article  CAS  PubMed  Google Scholar 

  • Olsson L, Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15:517–522. doi:10.1016/S0167-7799(97)01136-0

    Article  CAS  Google Scholar 

  • Overkamp KM, Bakker BM, Steensma HY, van Dijken JP, Pronk JT (2002) Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Yeast 19:813–824. doi:10.1002/yea.878

    Article  CAS  PubMed  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163:224–231

    Article  CAS  PubMed  Google Scholar 

  • Rocha SN, Abrahão-Neto J, Cerdán ME, Gombert AK, González-Siso MI (2011) Heterologous expression of a thermophilic esterase in Kluyveromyces yeasts. Appl Microbiol Biotechnol 89:375–385. doi:10.1007/s00253-010-2869-8

    Article  CAS  PubMed  Google Scholar 

  • Roux AE, Chartrand P, Ferbeyre G, Rokeach LA (2010) Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes. J Gerontol A Biol Sci Med Sci 65:1–8. doi:10.1093/gerona/glp152

    Article  PubMed  Google Scholar 

  • Saliola M, Sponziello M, D’Amici S, Lodi T, Falcone C (2008) Characterization of KlGUT2, a gene of the glycerol-3-phosphate shuttle, in Kluyveromyces lactis. FEMS Yeast Res 8:697–705. doi:10.1111/j.1567-1364.2008.00386.x

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath R, Breunig KD (2000) Genetics and Molecular Physiology of the Yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190. doi:10.1006/fgbi.2000.1221

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Zhang X, Gong Z, Wang Y, Yu X, Yang X, Zhao ZK (2017) Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 101:3801–3809. doi:10.1007/s00253-017-8157-0

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass: laboratory analytical procedure (LAP). Natl Renew Energy Lab

  • Souciet J-LJ-L, Dujon B, Gaillardin C, Johnston M, Baret PV, Cliften P, Sherman DJ, Weissenbach J, Westhof E, Wincker P, Jubin C, Poulain J, Barbe V, Segurens B, Artiguenave F, Anthouard V, Vacherie B, Val M-EM-EM-E, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret M-LM-LM-L, Casaregola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuveglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goeffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard G-FG-F, Sacerdot C, Straub M-LM-L, Talla E, Ségurens B, Artiguenave F, Anthouard V, Vacherie B, Val M-EM-EM-E, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret M-LM-LM-L, Casarégola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuvéglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goëffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard G-FG-F, Sacerdot C, Straub M-LM-L, Talla E, Segurens B, Artiguenave F, Anthouard V, Vacherie B, Val M-EM-EM-E, Fulton RS, Minx P, Wilson R, Durrens P, Jean G, Marck C, Martin T, Nikolski M, Rolland T, Seret M-LM-LM-L, Casaregola S, Despons L, Fairhead C, Fischer G, Lafontaine I, Leh V, Lemaire M, de Montigny J, Neuveglise C, Thierry A, Blanc-Lenfle I, Bleykasten C, Diffels J, Fritsch E, Frangeul L, Goeffon A, Jauniaux N, Kachouri-Lafond R, Payen C, Potier S, Pribylova L, Ozanne C, Richard G-FG-F, Sacerdot C, Straub M-LM-L, Talla E (2009) Comparative genomics of protoploid Saccharomycetaceae. Genome Res 19:1696–1709. doi:10.1101/gr.091546.109

    Article  PubMed  PubMed Central  Google Scholar 

  • Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116. doi:10.1016/j.jbiotec.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  • Suleau A, Gourdon P, Reitz-Ausseur J, Casaregola S (2006) Transcriptomic analysis of extensive changes in metabolic regulation in Kluyveromyces lactis strains. Eukaryot Cell 5:1360–1370. doi:10.1128/EC.00087-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Ooyen AJJJ, Dekker P, Huang M, Olsthoorn MMAA, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392. doi:10.1111/j.1567-1364.2006.00049.x

    Article  PubMed  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517. doi:10.1002/yea.320080703

    Article  CAS  PubMed  Google Scholar 

  • Walsh DJ, Gibbs MD, Bergquist PL (1998) Expression and secretion of a xylanase from the extreme thermophile, thermotoga strain FjSS3B.1, in Kluyveromyces lactis. Extremophiles 2:9–14

    Article  CAS  PubMed  Google Scholar 

  • Wésolowski-Louvel M, Breunig KD, Fukuhara H (1996) Kluyveromyces lactis. Nonconventional Yeasts in Biotechnology. Springer, Berlin Heidelberg, pp 139–201

    Chapter  Google Scholar 

  • (2016) Go forth and replicate! Nature 536:373–373. doi: 10.1038/536373a

Download references

Acknowledgements

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. T.O.B. would like to express his gratitude for funds provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago O. Basso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10482-017-0948-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, O., Basso, T.O., Rocha, I. et al. Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates. Antonie van Leeuwenhoek 111, 183–195 (2018). https://doi.org/10.1007/s10482-017-0940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0940-5

Keywords

Navigation