Skip to main content
Log in

Computational dynamics of soft machines

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Morin, S.A., Shepherd, R.F., Kwok, S.W., et al.: Camouflage and display for soft machines. Science 337, 828–832 (2012)

    Article  Google Scholar 

  2. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

    Article  Google Scholar 

  3. Wehner, M., Truby, R.L., Fitzgerald, D.J., et al.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016)

    Article  Google Scholar 

  4. Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)

    Article  Google Scholar 

  5. Li, T.F., Li, G.R., Liang, Y.M., et al.: Review of materials and structures in soft robotics. Chin. J. Theor. Appl. Mech. 48, 756–766 (2016)

    Google Scholar 

  6. Ajaj, R.M., Beaverstock, C.S., Friswell, M.I.: Morphing aircraft: the need for a new design philosophy. Aerosp. Sci. Technol. 49, 154–166 (2016)

    Article  Google Scholar 

  7. Tsuda, Y., Mori, O., Funase, R., et al.: Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183–188 (2013)

    Article  Google Scholar 

  8. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–613 (2003)

    Article  Google Scholar 

  9. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)

    Article  Google Scholar 

  10. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  12. Liu, C., Tian, Q., Yan, D., et al.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, H.J., Liu, C., Tian, Q., et al.: Three new triangular shell elements of ANCF represented by Bézier triangles. Multibody Syst. Dyn. 35, 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, K., Liu, C., Tian, Q., et al.: An efficient model reduction method for buckling analyses of thin shells based on IGA. Comput. Methods Appl. Mech. Eng. 309, 243–268 (2016)

    Article  MathSciNet  Google Scholar 

  15. García De Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid-flexible multibody system with composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)

    Article  MATH  Google Scholar 

  17. Shabana, A.A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 229, 109–112 (2014)

    Google Scholar 

  18. Volokh, K.Y.: Mechanics of Soft Materials. Israel Institute of Technology (2010)

  19. Zhang, Y.Q., Tian, Q., Chen, L.P., et al.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21, 281–303 (2009)

    Article  MATH  Google Scholar 

  20. Luo, K., Liu, C., Tian, Q., et al.: Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn. 85, 949–971 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Q.T., Tian, Q., Hu, H.Y.: Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32, 525–534 (2016)

  22. Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83, 1919–1937 (2016)

    Article  Google Scholar 

  23. Wang, Q.T., Tian, Q., Hu, H.Y.: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1411–1425 (2014)

    Article  MathSciNet  Google Scholar 

  24. Bernardi, C., Debit, N., Maday, Y.: Coupling finite element and spectral methods: first results. Math. Comput. 54, 21–39 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seitz, A., Farah, P., Kremheller, J., et al.: Isogeometric dual mortar methods for computational contact mechanics. Comput. Methods Appl. Mech. Eng. 301, 259–280 (2016)

    Article  MathSciNet  Google Scholar 

  26. McDevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48, 1525–1547 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  28. Kocak, S., Akay, H.U.: Parallel Schur complement method for large-scale systems on distributed memory computers. Appl. Math. Model 25, 873–886 (2001)

    Article  MATH  Google Scholar 

  29. Shepherda, R.F., Ilievskia, F., Choia, W., et al.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400–20403 (2011)

    Article  Google Scholar 

  30. Zhao, J., Tian, Q., Hu, H.Y.: Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech. Sin. 29, 132–142 (2013)

    Article  Google Scholar 

  31. Zhou, X.J., Zhou, C.Y., Zhang, X.X., et al.: Ground simulation tests of spinning deployment dynamics of a solar sail. J. Vib. Eng. 28, 175–182 (2015)

    Google Scholar 

  32. Li, P., Liu, C., Tian, Q., et al.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11, 061005 (2016)

    Article  Google Scholar 

  33. Wang, Z., Tian, Q., Hu, H.Y.: Dynamics of rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Z., Tian, Q., Hu, H.Y.: Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86, 1571–1597 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu.

Additional information

The shortened version of this article was published in Procedia IUTAM as a Sectional Lecture at the 24th International Congress of Theoretical and Applied Mechanics, Montreal, Canada, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Tian, Q. & Liu, C. Computational dynamics of soft machines. Acta Mech. Sin. 33, 516–528 (2017). https://doi.org/10.1007/s10409-017-0660-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0660-0

Keywords

Navigation