Skip to main content
Log in

Development of Wheel-Legged Biped Robots: A Review

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The wheel-legged biped robot is a typical ground-based mobile robot that can combine the high velocity and high efficiency pertaining to wheeled motion and the strong, obstacle-crossing performance associated with legged motion. These robots have gradually exhibited satisfactory application potential in various harsh scenarios such as rubble rescue, military operations, and wilderness exploration. Wheel-legged biped robots are divided into four categories according to the open–close chain structure forms and operation task modes, and the latest technology research status is summarized in this paper. The hardware control system, control method, and application are analyzed, and the dynamic balance control for the two-wheel, biomimetic jumping control for the legs and whole-body control for integrating the wheels and legs are analyzed. In summary, it is observed that the current research exhibits problems, such as the insufficient application of novel materials and a rigid–flexible coupling design; the limited application of the advanced, intelligent control methods; the inadequate understanding of the bionic jumping mechanisms in robot legs; and the insufficient coordination ability of the multi-modal motion, which do not exhibit practical application for the wheel-legged biped robots. Finally, this study discusses the key research directions and development trends for the wheel-legged biped robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data are available in the main text or supplementary materials.

References

  1. Hereid, A., Hubicki, C. M., Cousineau, E. A., & Ames, A. D. (2018). Dynamic humanoid locomotion: A scalable formulation for HZD gait optimization. IEEE Transactions on Robotics, 34(2), 370–387. https://doi.org/10.1109/TRO.2017.2783371

    Article  Google Scholar 

  2. Liu, C., Zhang, T., Liu, M., & Chen, Q. (2020). Active balance control of humanoid locomotion based on foot position compensation. Journal of Bionic Engineering, 17(1), 134–147. https://doi.org/10.1007/s42235-020-0011-x

    Article  Google Scholar 

  3. Iossaqui, J. G., Camino, J. F., & Zampieri, D. E. (2011). A nonlinear control design for tracked robots with longitudinal slip. In Proceedings of the 18th international federation of automatic control (IFAC), Milano, Italy (Vol. 44(1), pp. 5932–5937). https://doi.org/10.3182/20110828-6-IT-1002.02648

  4. Goldman, D. I., Chen, T. S., Dudek, D. M., & Full, R. J. (2006). Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 209(15), 2990–3000. https://doi.org/10.1242/jeb.02322

    Article  Google Scholar 

  5. Yang, Z., Zhu, L., Li, B., Sun, S., Chen, Y., Yan, Y., Liu, Y., & Chen, X. (2016). Mechanical design and analysis of a crawling locomotion enabled by a laminated beam. Extreme Mechanics Letters, 8, 88–95. https://doi.org/10.1016/j.eml.2016.03.014

    Article  Google Scholar 

  6. Bruzzone, L., & Quaglia, G. (2012). Review article: Locomotion systems for ground mobile robots in unstructured environments. Mechanical Sciences, 3(2), 49–62. https://doi.org/10.5194/ms-3-49-2012

    Article  Google Scholar 

  7. Sihite, E., Kalantari, A., Nemovi, R., Ramezani, A., & Gharib, M. (2023). Multi-modal mobility morphobot (M4) with appendage repurposing for locomotion plasticity enhancement. Nature Communications, 14(1), 3323. https://doi.org/10.1038/s41467-023-39018-y

    Article  Google Scholar 

  8. Liu, T., Zhang, C., Song, S., & Meng, M. Q. (2019). Dynamic height balance control for bipedal wheeled robot based on ROS-Gazebo. In Proceedings of the 2019 IEEE international conference on robotics and biomimetics (ROBIO), Dali, China (pp. 1875–1880). https://doi.org/10.1109/ROBIO49542.2019.8961739

  9. Dario Bellicoso, C., Jenelten, F., Fankhauser, P., Gehring, C., Hwangbo, J., & Hutter, M. (2017). Dynamic locomotion and whole-body control for quadrupedal robots. In Proceedings of the 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vancouver, BC, Canada (pp. 3359–3365). https://doi.org/10.1109/IROS.2017.8206174

  10. Chen, G., Tu, J., Ti, X., & Hu, H. (2020). A single-legged robot inspired by the jumping mechanism of click beetles and its hopping dynamics analysis. Journal of Bionic Engineering, 17(6), 1109–1125. https://doi.org/10.1007/s42235-020-0099-z

    Article  Google Scholar 

  11. Khadiv, M., Herzog, A., Moosavian, S., Ali, A., & Righetti, L. (2020). Walking control based on step timing adaptation. IEEE Transactions on Robotics, 36(3), 629–643. https://doi.org/10.1109/TRO.2020.2982584

    Article  Google Scholar 

  12. Hutter, M., Sommer, H., Gehring, C., Hoepflinger, M., Bloesch, M., & Siegwart, R. (2014). Quadrupedal locomotion using hierarchical operational space control. The International Journal of Robotics Research, 33(8), 1047–1062. https://doi.org/10.1177/0278364913519834

    Article  Google Scholar 

  13. Klemm, V., Morra, A., Salzmann, C., Tschopp, F., Bodie, K., Gulich, L., Küng, N., Mannhart, D., Pfister, C., Vierneisel, M., Weber, F., Deuber, R., & Siegwart, R. (2019). Ascento: A two-wheeled jumping robot. In Proceedings of the 2019 international conference on robotics and automation (ICRA), Montreal, Canada (pp. 7515–7521). https://doi.org/10.1109/ICRA.2019.8793792

  14. Raza, F., & Hayashibe, M. (2021). Towards robust wheel-legged biped robot system: Combining feedforward and feedback control. In Proceedings of the 2021 IEEE/SICE international symposium on system integration (SII), Fukushima, Japan (pp. 606–612). https://doi.org/10.1109/IEEECONF49454.2021.9382678

  15. Guo, F., Wang, S., & Wang, J. (2022). Development status and key technology analysis for motion planning of wheel-legged hybrid mobile robot. Control and Decision, 37(06), 1433–1444. https://doi.org/10.13195/j.kzyjc.2021.0052. in Chinese.

    Article  Google Scholar 

  16. Xin, S., & Vijayakumar, S. (2020). Online dynamic motion planning and control for wheeled biped robots. In Proceedings of the 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS), Las Vegas, NV, USA (pp. 3892–3899). https://doi.org/10.1109/IROS45743.2020.9340967

  17. Liu, T., Zhang, C., Wang, J., Song, S., & Meng, M. Q. (2022). Towards terrain adaptability: In situ transformation of wheel-biped robots. IEEE Robotics and Automation Letters, 7(2), 3819–3826. https://doi.org/10.1109/LRA.2022.3148486

    Article  Google Scholar 

  18. Official website of Boston Dynamics. (2019, March 29). Handle robot reimagined for logistics. Retrieved July 10, 2023, from https://www.youtube.com/watch?v=5iV_hB08Uns

  19. Li, X., Zhou, H., Zhang, S., Feng, H., & Fu, Y. (2019). WLR-II, a hose-less hydraulic wheel-legged robot. In Proceedings of the 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), Macau, China (pp. 4339–4346). https://doi.org/10.1109/IROS40897.2019.8967935

  20. Official website of Boston Dynamics. (2017, February 28). Introducing handle. Retrieved July 10, 2023, from https://www.youtube.com/watch?v=-7xvqQeoA8c

  21. Chen, H., Wang, B., Hong, Z., Shen, C., Wensing, P. M., & Zhang, W. (2021). Underactuated motion planning and control for jumping with wheeled-bipedal robots. IEEE Robotics and Automation Letters, 6(2), 747–754. https://doi.org/10.1109/LRA.2020.3047787

    Article  Google Scholar 

  22. Wang, S., Cui, L., Zhang, J., Lai, J., Zhang, D., Chen, K., Zheng, Y., Zhang, Z., & Jiang, Z. (2021). Balance control of a novel wheel-legged robot: Design and experiments. In Proceedings of the 2021 IEEE international conference on robotics and automation (ICRA), Xi’an, China (pp 6782–6788). https://doi.org/10.1109/ICRA48506.2021.9561579

  23. Jung, T., Lim, J., Bae, H., Lee, K. K., Joe, H. M., & Oh, J. H. (2018). Development of the humanoid disaster response platform DRC-HUBO+. IEEE Transactions on Robotics, 34(1), 1–17. https://doi.org/10.1109/TRO.2017.2776287

    Article  Google Scholar 

  24. Zhang, C., Liu, T., Song, S., & Meng, M. Q. (2019). System design and balance control of a bipedal leg-wheeled robot. In Proceedings of the 2019 IEEE international conference on robotics and biomimetics (ROBIO), Dali, China (pp. 1869–1874). https://doi.org/10.1109/ROBIO49542.2019.8961814

  25. Klemm, V., Morra, A., Gulich, L., Mannhart, D., Rohr, D., Kamel, M., Viragh, Y., & Siegwart, R. (2020). LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robotics and Automation Letters, 5(2), 3745–3752. https://doi.org/10.1109/LRA.2020.2979625

    Article  Google Scholar 

  26. Zhang, X., Wang, Q., Huang, S., & Jiang, L. (2022). A multi-model fusion based complex motion control approach for a cheetah-mimicking quadruped robot. Robot, 44(06), 682–707. https://doi.org/10.13973/j.cnki.robot.210500. in Chinese.

    Article  Google Scholar 

  27. Zhang, C., Zou, W., Ma, L., & Wang, Z. (2020). Biologically inspired jumping robots: A comprehensive review. Robotics and Autonomous Systems, 124, 103362. https://doi.org/10.1016/j.robot.2019.103362

    Article  Google Scholar 

  28. Hong, C., Tang, D., Quan, Q., Cao, Z., & Deng, Z. (2020). A combined series-elastic actuator and parallel-elastic leg no-latch bio-inspired jumping robot. Mechanism and Machine Theory, 149, 103814. https://doi.org/10.1016/j.mechmachtheory.2020.103814

    Article  Google Scholar 

  29. Ramos, J., & Kim, S. (2018). Humanoid dynamic synchronization through whole-body bilateral feedback teleoperation. IEEE Transactions on Robotics, 34(4), 953–965. https://doi.org/10.1109/TRO.2018.2830387

    Article  Google Scholar 

  30. Eiji, N., & Sei, N. (1993). Leg-wheel robot: A futuristic mobile platform for forestry industry. In Proceedings of 1993 IEEE/Tsukuba international workshop on advanced robotics, Tsukuba, Japan (pp. 109–112). https://doi.org/10.1109/ICAR.1993.337208

  31. Official website of Boston Dynamics. (2016, February 24). Atlas, the next generation. Retrieved July 10, 2023, from https://www.youtube.com/watch?v=rVlhMGQgDkY

  32. Muscolo, G. G., Caldwell, D., & Cannella, F. (2017). Biomechanics of human locomotion with constraints to design flexible-wheeled biped robots. In Proceedings of the 2017 IEEE international conference on advanced intelligent mechatronics (AIM), Munich, Germany (pp. 1273–1278). https://doi.org/10.1109/AIM.2017.8014193

  33. Li, X., Zhou, H., Feng, H., Zhang, S., & Fu, Y. (2018). Design and experiments of a novel hydraulic wheel-legged robot (WLR). In Proceedings of the 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), Madrid, Spain (pp. 3292–3297). https://doi.org/10.1109/IROS.2018.8594484

  34. Zhao, L., Yu, Z., Chen, X., Huang, G., Wang, W., Han, L., Qiu, X., Zhang, X., & Huang, Q. (2021). System design and balance control of a novel electrically-driven wheel-legged humanoid robot. In Proceedings of the 2021 IEEE international conference on unmanned systems (ICUS), Beijing, China (pp. 742–747). https://doi.org/10.1109/ICUS52573.2021.9641385

  35. Official Website of Fraunhofer IML. (2023, April 25). evoBOT-inventors and developers explain the technology. Retrieved July 10, 2023, from https://www.iml.fraunhofer.de/evoBOT.html

  36. Ji, S. (2021). Development of robot system and model predictive control for wheeled bipedal robots. Dissertation, Harbin Institute of Technology (in Chinese). https://doi.org/10.27061/d.cnki.ghgdu.2021.003717

  37. Cui, Z., Xin, Y., Liu, S., Rong, X., & Li, Y. (2022). Modeling and control of a wheeled biped robot. Micromachines, 13(5), 747. https://doi.org/10.3390/mi13050747

    Article  Google Scholar 

  38. Chen, S., Rogers, J., Zhang, B., & Sreenath, K. (2019). Feedback control for autonomous riding of hovershoes by a Cassie bipedal robot. In Proceedings of the 2019 IEEE-RAS 19th international conference on humanoid robots (Humanoids), Toronto, Canada (pp. 1–8). https://doi.org/10.1109/Humanoids43949.2019.9336618

  39. Kollarčík, A. (2021). Modeling and control of two-legged wheeled robot. Dissertation, Czech Technical University in Prague. https://gitlab.fel.cvut.cz/kollaada/master-thesis-by-adam-kollarcik

  40. Guo, T., Liu, J., Liang, H., Zhang, Y., Chen, W., Xia, X., Wang, M., & Wang, Z. (2022). Design and dynamic analysis of jumping wheel-legged robot in complex terrain environment. Frontiers in Neurorobotics, 16, 1066714. https://doi.org/10.3389/fnbot.2022.1066714

    Article  Google Scholar 

  41. Official website of IEEE. (2023, May 29). 2023 IEEE international conference on robotics and automation (ICRA). Retrieved July 10, 2023, from https://ieeexplore.ieee.org/xpl/conhome/10160211/proceeding

  42. Official website of RMU. (2022, September 10). RoboMaster University Series. Retrieved July 10, 2023, from https://www.robomaster.com/zh-CN

  43. Oreoreo. (2022, May 7). Retrieved July 10, 2023, from https://www.bilibili.com/video/BV1UZ4y1h7u2/?spm_%20id_from=333.999.0.0&vd_source=ab5e3d9d139f8b6dfed3794406fd6ccd

  44. Ordinary Rango. (2022, November 16). Retrieved July 10, 2023, from https://www.bilibili.com/video/BV1hD4y147pf/?spm_id_from=333.999.0.0

  45. Niiyama, R., Nagakubo, A., & Kuniyoshi, Y. (2007). Mowgli: A bipedal jumping and landing robot with an artificial musculoskeletal system. In Proceedings of the 2007 IEEE international conference on robotics and automation, Rome, Italy (pp. 2546–2551). https://doi.org/10.1109/ROBOT.2007.363848

  46. Haldane, D. W., Plecnik, M. M., Yim, J. K., & Fearing, R. S. (2016). Robotic vertical jumping agility via series-elastic power modulation. Science Robotics, 1(1), 2048. https://doi.org/10.1126/scirobotics.aag2048

    Article  Google Scholar 

  47. Pathak, K., Franch, J., & Agrawal, S. K. (2005). Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics, 21(3), 505–513. https://doi.org/10.1109/TRO.2004.840905

    Article  Google Scholar 

  48. Cui, R., Guo, J., & Mao, Z. (2015). Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dynamics, 79(1), 501–511. https://doi.org/10.1007/s11071-014-1682-9

    Article  MathSciNet  Google Scholar 

  49. Zhang, Y., Zhang, L., Wang, W., Li, Y., & Zhang, Q. (2018). Design and implementation of a two-wheel and hopping robot with a linkage mechanism. IEEE Access, 6, 42422–42430. https://doi.org/10.1109/ACCESS.2018.2859840

    Article  Google Scholar 

  50. Liu, J., Ruan, X., Lu, M., Weng, H., Wu, D., & Zheng, M. (2023). Motion analysis and stability optimization for metamorphic robot reconfiguration. Robotica, 41(4), 1179–1202. https://doi.org/10.1017/S0263574722001618

    Article  Google Scholar 

  51. Liu, J., Yan, Z., Lu, M., Zhang, L., Cui, T., Zheng, M., & Wu, D. (2022). Stability analysis and design of an unmanned deformable vehicle during coupled reconfiguration motion. Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 236(4), 639–659. https://doi.org/10.1177/14644193221125543

    Article  Google Scholar 

  52. He, Y., Li, Y., Wu, J., Liu, X., & Yao, Y. (2019). Design and mobility analysis of a multi-mode two-wheel mobile robot. Journal of Mechanical Engineering, 55(23), 83–92. https://doi.org/10.3901/JME.2019.23.083. in Chinese.

    Article  Google Scholar 

  53. Liu, K., Gao, H., Ji, H., & Hao, Z. (2020). Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. International Journal of Control, Automation and Systems, 18(5), 1288–1298. https://doi.org/10.1007/s12555-019-0262-7

    Article  Google Scholar 

  54. Xie, C., Fan, Y., & Qiu, J. (2020). Event-based tracking control for nonholonomic mobile robots. Nonlinear Analysis: Hybrid Systems, 38, 100945. https://doi.org/10.1016/j.nahs.2020.100945

    Article  MathSciNet  Google Scholar 

  55. Xin, L., Wang, Q., She, J., & Li, Y. (2016). Robust adaptive tracking control of wheeled mobile robot. Robotics and Autonomous Systems, 78, 36–48. https://doi.org/10.1016/j.robot.2016.01.002

    Article  Google Scholar 

  56. Asif, M., Khan, M. J., & Cai, N. (2014). Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking. International Journal of Control, 87(5), 964–975. https://doi.org/10.1080/00207179.2013.862597

    Article  MathSciNet  Google Scholar 

  57. Chen, C. Y., Li, T. S., Yeh, Y. C., & Chang, C. C. (2009). Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics, 19(2), 156–166. https://doi.org/10.1016/j.mechatronics.2008.09.004

    Article  Google Scholar 

  58. Esmaeili, N., Alfi, A., & Khosravi, H. (2017). Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: Design and experiments. Journal of Intelligent and Robotic Systems, 87(3–4), 601–613. https://doi.org/10.1007/s10846-017-0486-9

    Article  Google Scholar 

  59. Xin, Y., Chai, H., Li, Y., Rong, X., Li, B., & Li, Y. (2019). Speed and acceleration control for a two wheel-leg robot based on distributed dynamic model and whole-body control. IEEE Access, 7, 180630–180639. https://doi.org/10.1109/ACCESS.2019.2959333

    Article  Google Scholar 

  60. Zambella, G., Lentini, G., Garabini, M., Grioli, G., Catalano, M. G., Palleschi, A., & Caporale, D. (2019). Dynamic whole-body control of unstable wheeled humanoid robots. IEEE Robotics and Automation Letters, 4(4), 3489–3496. https://doi.org/10.1109/LRA.2019.2927961

    Article  Google Scholar 

  61. Zhang, X., Zhang, Y., Sun, H., Jia, Q., & Xiao, H. (2014). Design and dynamics analysis of a two-wheel robot with hopping ability. Robot, 36(03), 355–361 (in Chinese) https://robot.sia.cn/cn/article/id/3671

  62. Özlük, Y., & Aydin, E. A. (2023). Fuzzy logic control of a head-movement based semi-autonomous human–machine interface. Journal of Bionic Engineering, 20, 645–655. https://doi.org/10.1007/s42235-022-00272-3

    Article  Google Scholar 

  63. Wan, Y., Qiu, Z., Hong, Y., Wang, Y., Zhang, J., Liu, Q., Wu, Z., & Guo, C. (2018). A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Advanced Electronic Materials, 4(4), 1700586. https://doi.org/10.1002/aelm.201700586

    Article  Google Scholar 

  64. Guo, Y., Guo, Z., Zhong, M., Wan, P., Zhang, W., & Zhang, L. (2018). A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small (Weinheim an der Bergstrasse, Germany), 14(44), 1803018. https://doi.org/10.1002/smll.201803018

    Article  Google Scholar 

  65. Liu, Y., Shi, X., Liu, S., Li, H., Zhang, H., Wang, C., Liang, J., & Chen, Y. (2019). Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy, 63, 103898. https://doi.org/10.1016/j.nanoen.2019.103898

    Article  Google Scholar 

  66. Ye, X., Li, Y., Zhang, Y., & Wang, P. (2022). A comprehensive review: Recent developments of biomimetic sensors. Journal of Bionic Engineering, 19(4), 853–876. https://doi.org/10.1007/s42235-022-00181-5

    Article  Google Scholar 

  67. Bian, Z., & Wang, X. (2023). Control algorithms for quadruped robots: Modeling, control, and practice. China Machine Press.

    Google Scholar 

  68. Kenneally, G., De, A., & Koditschek, D. E. (2016). Design principles for a family of direct-drive legged robots. IEEE Robotics and Automation Letters, 1(2), 900–907. https://doi.org/10.1109/LRA.2016.2528294

    Article  Google Scholar 

  69. Seok, S., Wang, A., Meng Yee Chuah, Otten, D., Lang, J., & Kim, S. (2013). Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the 2013 IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany (pp. 3307–3312). https://doi.org/10.1109/ICRA.2013.6631038

  70. Zhang, X. (2021). Mechanism design and control of bionic elastic actuated joint based on multi-configuration. Dissertation, University of Electronic Science and Technology of China (in Chinese). https://doi.org/10.27005/d.cnki.gdzku.2021.002815

  71. Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26), 5872. https://doi.org/10.1126/scirobotics.aau5872

    Article  Google Scholar 

  72. Medeiros, V. S., Jelavic, E., Bjelonic, M., Siegwart, R., Meggiolaro, M. A., & Hutter, M. (2020). Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain. IEEE Robotics and Automation Letters, 5(3), 4172–4179. https://doi.org/10.1109/LRA.2020.2990720

    Article  Google Scholar 

  73. Yue, M., An, C., & Sun, J. Z. (2018). An efficient model predictive control for trajectory tracking of wheeled inverted pendulum vehicles with various physical constraints. International Journal of Control, Automation and Systems, 16(1), 265–274. https://doi.org/10.1007/s12555-016-0393-z

    Article  Google Scholar 

  74. Albert, K., Phogat, K. S., Anhalt, F., Banavar, R. N., Chatterjee, D., & Lohmann, B. (2020). Structure-preserving constrained optimal trajectory planning of a wheeled inverted pendulum. IEEE Transactions on Robotics, 36(3), 910–923. https://doi.org/10.1109/TRO.2020.2985579

    Article  Google Scholar 

  75. Cui, L., Wang, S., Zhang, J., Zhang, D., Lai, J., Zheng, Y., Zhang, Z., & Jiang, Z. P. (2021). Learning-based balance control of wheel-legged robots. IEEE Robotics and Automation Letters, 6(4), 7667–7674. https://doi.org/10.1109/LRA.2021.3100269

    Article  Google Scholar 

  76. Yu, H., Gao, H., & Deng, Z. (2021). Toward a unified approximate analytical representation for spatially running spring-loaded inverted pendulum model. IEEE Transactions on Robotics, 37(2), 691–698. https://doi.org/10.1109/TRO.2020.2976304

    Article  Google Scholar 

  77. Zhou, H., Li, X., Feng, H., Li, J., Zhang, S., & Fu, Y. (2019). Model decoupling and control of the wheeled humanoid robot moving in sagittal plane. In Proceedings of the 2019 IEEE-RAS 19th international conference on humanoid robots (Humanoids), Toronto, Canada (pp. 359–364). https://doi.org/10.1109/Humanoids43949.2019.9035069

  78. Herdt, A., Diedam, H., Wieber, P. B., Dimitrov, D., Mombaur, K., & Diehl, M. (2010). Online walking motion generation with automatic footstep placement. Advanced Robotics, 24(5–6), 719–737. https://doi.org/10.1163/016918610X493552

    Article  Google Scholar 

  79. Scianca, N., De Simone, D., Lanari, L., & Oriolo, G. (2020). MPC for humanoid gait generation: Stability and feasibility. IEEE Transactions on Robotics, 36(4), 1171–1188. https://doi.org/10.1109/TRO.2019.2958483

    Article  Google Scholar 

  80. Park, B., & Park, J. (2023). Heel-strike and toe-off walking of humanoid robot using quadratic programming considering the foot contact states. Robotics and Autonomous Systems, 163, 104396. https://doi.org/10.1016/j.robot.2023.104396

    Article  Google Scholar 

  81. Xin, S., Orsolino, R., & Tsagarakis, N. (2019). Online relative footstep optimization for legged robots dynamic walking using discrete-time model predictive control. In Proceedings of the 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), Macau, China (pp. 513–520). https://doi.org/10.1109/IROS40897.2019.8968028

  82. Yarza, A., Santibanez, V., & Moreno-Valenzuela, J. (2011). Global asymptotic stability of the classical PID controller by considering saturation effects in industrial robots. International Journal of Advanced Robotic Systems, 8(4), 36. https://doi.org/10.5772/45688

    Article  Google Scholar 

  83. Salinas, A., Moreno-Valenzuela, J., & Kelly, R. (2016). A family of nonlinear PID-like regulators for a class of torque-driven robot manipulators equipped with torque-constrained actuators. Advances in Mechanical Engineering, 8(2), 1–14. https://doi.org/10.1177/1687814016628492

    Article  Google Scholar 

  84. Sun, X., Hashimoto, K., Hayashi, S., Okawara, M., Mastuzawa, T., & Takanishi, A. (2021). Stable vertical ladder climbing with rung recognition for a four-limbed robot. Journal of Bionic Engineering, 18(4), 786–798. https://doi.org/10.1007/s42235-021-0058-3

    Article  Google Scholar 

  85. Stilman, M., Wang, J., Teeyapan, K., & Marceau, R. (2009). Optimized control strategies for wheeled humanoids and mobile manipulators. In Proceedings of the 2009 9th IEEE-RAS international conference on humanoid robots, Paris, France (pp. 568–573). https://doi.org/10.1109/ICHR.2009.5379514

  86. Ugurlu, B., & Kawamura, A. (2010). ZMP-based online jumping pattern generation for a one-legged robot. IEEE Transactions on Industrial Electronics, 57(5), 1701–1709. https://doi.org/10.1109/TIE.2009.2032439

    Article  Google Scholar 

  87. Zhang, J., Song, G., Li, Y., Qiao, G., Song, A., & Wang, A. (2013). A bio-inspired jumping robot: Modeling, simulation, design, and experimental results. Mechatronics, 23(8), 1123–1140. https://doi.org/10.1016/j.mechatronics.2013.09.005

    Article  Google Scholar 

  88. Kovac, M., Fuchs, M., Guignard, A., Zufferey, J. C., & Floreano, D. (2008). A miniature 7g jumping robot. In Proceedings of the 2008 IEEE international conference on robotics and automation (ICRA), Pasadena, CA, USA, 373–378. https://doi.org/10.1109/ROBOT.2008.4543236

  89. Zaitsev, V., Gvirsman, O., Ben Hanan, U., Weiss, A., Ayali, A., & Kosa, G. (2015). A locust-inspired miniature jumping robot. Bioinspiration and Biomimetics, 10(6), 066012. https://doi.org/10.1088/1748-3190/10/6/066012

    Article  Google Scholar 

  90. Han, L., Wang, Z., Ji, A., & Dai, Z. (2013). The mechanics and trajectory control in locust jumping. Journal of Bionic Engineering, 10(2), 194–200. https://doi.org/10.1016/S1672-6529(13)60215-2

    Article  Google Scholar 

  91. Noh, M., Kim, S. W., An, S., Koh, J. S., & Cho, K. J. (2012). Flea-inspired catapult mechanism for miniature jumping robots. IEEE Transactions on Robotics, 28(5), 1007–1018. https://doi.org/10.1109/TRO.2012.2198510

    Article  Google Scholar 

  92. Jung, G. P., Choi, H. C., & Cho, K. J. (2017). The effect of leg compliance in multi-directional jumping of a flea-inspired mechanism. Bioinspiration and Biomimetics, 12(2), 026006. https://doi.org/10.1088/1748-3190/aa575a

    Article  Google Scholar 

  93. Clemente, C. J., & Richards, C. (2013). Muscle function and hydrodynamics limit power and speed in swimming frogs. Nature Communications, 4(1), 2737. https://doi.org/10.1038/ncomms3737

    Article  Google Scholar 

  94. Graichen, K., Hentzelt, S., Hildebrandt, A., Kärcher, N., Gaißert, N., & Knubben, E. (2015). Control design for a bionic kangaroo. Control Engineering Practice, 42, 106–117. https://doi.org/10.1016/j.conengprac.2015.05.005

    Article  Google Scholar 

  95. Chen, T., Sun, X., Xu, Z., Li, Y., Rong, X., & Zhou, L. (2019). A trot and flying trot control method for quadruped robot based on optimal foot force distribution. Journal of Bionic Engineering, 16(4), 621–632. https://doi.org/10.1007/s42235-019-0050-3

    Article  Google Scholar 

  96. Nguyen, Q. V., & Park, H. C. (2012). Design and demonstration of a locust-like jumping mechanism for small-scale robots. Journal of Bionic Engineering, 9(3), 271–281. https://doi.org/10.1016/S1672-6529(11)60121-2

    Article  Google Scholar 

  97. Han, B., Luo, X., Liu, Q., Zhou, B., & Chen, X. (2014). Hybrid control for SLIP-based robots running on unknown rough terrain. Robotica, 32(7), 1065–1080. https://doi.org/10.1017/S0263574713001239

    Article  Google Scholar 

  98. Mathis, F. B., & Mukherjee, R. (2016). Apex height control of a two-mass robot hopping on a rigid foundation. Mechanism and Machine Theory, 105, 44–57. https://doi.org/10.1016/j.mechmachtheory.2016.06.014

    Article  Google Scholar 

  99. Gao, J., Jin, H., Zhu, Y., Gao, L., Lv, H., Zhao, J., & Cai, H. (2023). Research on jumping algorithm of wheel-legged self-balancing robot based on nonlinear spring model. Journal of Mechanical Engineering, 59(09), 51–62. in Chinese.

    Article  Google Scholar 

  100. Zhao, D., & Revzen, S. (2020). Multi-legged steering and slipping with low DoF hexapod robots. Bioinspiration and Biomimetics, 15(4), 045001. https://doi.org/10.1088/1748-3190/ab84c0

    Article  Google Scholar 

  101. Chen, Z., Lu, J., Deng, P., Guo, Y., & Li, Y. (2020). Design and attitude control of a stable jumping robot. Journal of Mechanical Engineering, 56(23), 34–44. https://doi.org/10.3901/JME.2020.23.034. (in Chinese).

    Article  Google Scholar 

  102. Xin, Y., Li, Y., Chai, H., Rong, X., & Li, B. (2023). Research on jumping method of two wheeled-leg robot based on whole-body torque control. Acta Automatica Sinica, 49(8), 1635–1644. https://doi.org/10.16383/j.aas.c200486. (in Chinese).

    Article  Google Scholar 

  103. Misu, K., Yoshii, A., & Mochiyama, H. (2018). A compact wheeled robot that can jump while rolling. In Proceedings of the 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), Madrid, Spain (pp. 7507–7512). https://doi.org/10.1109/IROS.2018.8593895

  104. Chen, Z., Lu, J., Deng, P., Guo, Y., & Li, Y. (2020). Design of balanced wheeled jumping robot based on the motion mechanism of springtail. Journal of Mechanical Engineering, 56(17), 20–28. https://doi.org/10.3901/JME.2020.17.020. (in Chinese).

    Article  Google Scholar 

  105. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6(2), 3–15. https://doi.org/10.1177/027836498700600201

    Article  Google Scholar 

  106. Khatib, O., Sentis, L., Park, J., & Warren, J. (2004). Whole-body dynamic behavior and control of human-like robots. International Journal of Humanoid Robotics, 01(01), 29–43. https://doi.org/10.1142/S0219843604000058

    Article  Google Scholar 

  107. Dietrich, A., Bussmann, K., Petit, F., Kotyczka, P., Ott, C., Lohmann, B., & Albu-Schäffer, A. (2016). Whole-body impedance control of wheeled mobile manipulators: Stability analysis and experiments on the humanoid robot Rollin’ Justin. Autonomous Robots, 40(3), 505–517. https://doi.org/10.1007/s10514-015-9438-z

    Article  Google Scholar 

  108. Dietrich, A., Ott, C., & Albu-Schäffer, A. (2015). An overview of null space projections for redundant, torque-controlled robots. The International Journal of Robotics Research, 34(11), 1385–1400. https://doi.org/10.1177/0278364914566516

    Article  Google Scholar 

  109. Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 02(04), 505–518. https://doi.org/10.1142/S0219843605000594

    Article  Google Scholar 

  110. Dario Bellicoso, C., Gehring, C., Hwangbo, J., Fankhauser, P., & Hutter, M. (2016). Perception-less terrain adaptation through whole body control and hierarchical optimization. In Proceedings of the 2016 IEEE-RAS 16th international conference on humanoid robots (Humanoids), Cancun, Mexico (pp. 558–564). https://doi.org/10.1109/HUMANOIDS.2016.7803330

  111. Xin, Y., Rong, X., Li, Y., Li, B., & Chai, H. (2019). Movements and balance control of a wheel-leg robot based on uncertainty and disturbance estimation method. IEEE Access, 7, 133265–133273. https://doi.org/10.1109/ACCESS.2019.2940487

    Article  Google Scholar 

  112. Sleiman, J. P., Farshidian, F., Minniti, M. V., & Hutter, M. (2021). A unified MPC framework for whole-body dynamic locomotion and manipulation. IEEE Robotics and Automation Letters, 6(3), 4688–4695. https://doi.org/10.1109/LRA.2021.3068908

    Article  Google Scholar 

  113. Ahn, J. K., & Jung, S. (2014). Development of a two-wheel mobile manipulator: Balancing and interaction control. Robotica, 32(7), 1135–1152. https://doi.org/10.1017/S026357471300129X

    Article  Google Scholar 

  114. Xu, J. X., Guo, Z. Q., & Lee, T. H. (2013). Design and implementation of a Takagi-Sugeno-type fuzzy logic controller on a two-wheeled mobile robot. IEEE Transactions on Industrial Electronics, 60(12), 5717–5728. https://doi.org/10.1109/TIE.2012.2230600

    Article  Google Scholar 

  115. Bjelonic, M., Bellicoso, C. D., De Viragh, Y., Sako, D., Tresoldi, F. D., Jenelten, F., & Hutter, M. (2019). Keep Rollin’—whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robotics and Automation Letters, 4(2), 2116–2123. https://doi.org/10.1109/LRA.2019.2899750

    Article  Google Scholar 

  116. Bjelonic, M., Sankar, P. K., Bellicoso, C. D., Vallery, H., & Hutter, M. (2020). Rolling in the deep–hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robotics and Automation Letters, 5(2), 3626–3633. https://doi.org/10.1109/LRA.2020.2979661

    Article  Google Scholar 

  117. Jin, Y., Liu, X., Shao, Y., Wang, H., & Yang, W. (2022). High-speed quadrupedal locomotion by imitation-relaxation reinforcement learning. Nature Machine Intelligence, 4(12), 1198–1208. https://doi.org/10.1038/s42256-022-00576-3

    Article  Google Scholar 

  118. Kim, K., Spieler, P., Lupu, E. S., Ramezani, A., & Chung, S. J. (2021). A bipedal walking robot that can fly, slackline, and skateboard. Science Robotics, 6(59), 1–14. https://doi.org/10.1126/scirobotics.abf8136

    Article  Google Scholar 

  119. Xiong, X., & Ames, A. (2022). 3-D underactuated bipedal walking via H-LIP based gait synthesis and stepping stabilization. IEEE Transactions on Robotics, 38(4), 2405–2425. https://doi.org/10.1109/TRO.2022.3150219

    Article  Google Scholar 

  120. Wang, W., Ji, A., Manoonpong, P., Shen, H., Hu, J., Dai, Z., & Yu, Z. (2018). Lateral undulation of the flexible spine of sprawling posture vertebrates. Journal of Comparative Physiology A, 204(8), 707–719. https://doi.org/10.1007/s00359-018-1275-z

    Article  Google Scholar 

  121. Zhang, Z., Chen, D., Chen, K., & Chen, H. (2016). Analysis and comparison of two jumping leg models for bioinspired locust robot. Journal of Bionic Engineering, 13(4), 558–571. https://doi.org/10.1016/S1672-6529(16)60328-1

    Article  MathSciNet  Google Scholar 

  122. Chen, R., Yuan, Z., Guo, J., Bai, L., Zhu, X., Liu, F., Pu, H., Xin, L., Peng, Y., Luo, J., Wen, L., & Sun, Y. (2021). Legless soft robots capable of rapid, continuous, and steered jumping. Nature Communications, 12(1), 7028. https://doi.org/10.1038/s41467-021-27265-w

    Article  Google Scholar 

  123. Qiu, J., Ji, A., Zhu, K., Han, Q., Wang, W., Qi, Q., & Chen, G. (2023). A gecko-inspired robot with a flexible spine driven by shape memory alloy springs. Soft Robotics, 10(4), 713–723. https://doi.org/10.1089/soro.2022.0080

    Article  Google Scholar 

  124. Kim, Y. K., Seol, W., & Park, J. (2021). Biomimetic quadruped robot with a spinal joint and optimal spinal motion via reinforcement learning. Journal of Bionic Engineering, 18(6), 1280–1290. https://doi.org/10.1007/s42235-021-00104-w

    Article  Google Scholar 

  125. Wu, J., Xin, G., Qi, C., & Xue, Y. (2023). Learning robust and agile legged locomotion using adversarial motion priors. IEEE Robotics and Automation Letters, 8(8), 4975–4982. https://doi.org/10.1109/LRA.2023.3290509

    Article  Google Scholar 

  126. Singh, B., Vijayvargiya, A., & Kumar, R. (2022). Kinematic modeling for biped robot gait trajectory using machine learning techniques. Journal of Bionic Engineering, 19(2), 355–369. https://doi.org/10.1007/s42235-021-00142-4

    Article  Google Scholar 

  127. Lee, Y., Lee, H., Lee, J., & Park, J. (2022). Toward reactive walking: Control of biped robots exploiting an event-based FSM. IEEE Transactions on Robotics, 38(2), 683–698. https://doi.org/10.1109/TRO.2021.3088062

    Article  Google Scholar 

  128. Rosa, N., & Lynch, K. M. (2022). A topological approach to gait generation for biped robots. IEEE Transactions on Robotics, 38(2), 699–718. https://doi.org/10.1109/TRO.2021.3094159

    Article  Google Scholar 

  129. Zhang, C., Lin, C., Leng, Y., Fu, Z., Cheng, Y., & Fu, C. (2023). An effective head-based HRI for 6D robotic grasping using mixed reality. IEEE Robotics and Automation Letters, 8(5), 2796–2803. https://doi.org/10.1109/LRA.2023.3261701

    Article  Google Scholar 

  130. Zhang, Z., Long, Y., Chen, G., Wu, Q., Wang, H., & Jiang, H. (2023). Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Science Advances, 9(15), 1–15. https://doi.org/10.1126/sciadv.adg1203

    Article  Google Scholar 

  131. Liu, F., Sun, F., Fang, B., Li, X., Sun, S., & Liu, H. (2023). Hybrid robotic grasping with a soft multimodal gripper and a deep multistage learning scheme. IEEE Transactions on Robotics, 39(3), 2379–2399. https://doi.org/10.1109/TRO.2023.3238910

    Article  Google Scholar 

  132. Fang, B., Xia, Z., Sun, F., Yang, Y., Liu, H., & Fang, C. (2023). Soft magnetic fingertip with particle-jamming structure for tactile perception and grasping. IEEE Transactions on Industrial Electronics, 70(6), 6027–6035. https://doi.org/10.1109/TIE.2022.3201305

    Article  Google Scholar 

  133. Cai, Y., & Yuan, S. (2023). In-hand manipulation in power grasp: Design of an adaptive robot hand with active surfaces. In Proceedings of the 2023 IEEE international conference on robotics and automation (ICRA), London, UK, 10296–10302. https://doi.org/10.1109/ICRA48891.2023.10161516

  134. Ze, Q., Wu, S., Nishikawa, J., Dai, J., Sun, Y., Leanza, S., Zemelka, C., Novelino, L. S., Paulino, G. H., & Zhao, R. R. (2022). Soft robotic origami crawler. Science Advances, 8(13), 1–9. https://doi.org/10.1126/sciadv.abm7834

    Article  Google Scholar 

  135. Park, H. W., Wensing, P. M., & Kim, S. (2021). Jumping over obstacles with MIT Cheetah 2. Robotics and Autonomous Systems, 136, 103703. https://doi.org/10.1016/j.robot.2020.103703

    Article  Google Scholar 

Download references

Funding

This work was supported by the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures (1005-IZD23002-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihong Ji.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, Y., Wen, S. et al. Development of Wheel-Legged Biped Robots: A Review. J Bionic Eng 21, 607–634 (2024). https://doi.org/10.1007/s42235-023-00468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00468-1

Keywords

Navigation