Skip to main content
Log in

Closed-form relation to predict static pull-in voltage of an electrostatically actuated clamped–clamped microbeam under the effect of Casimir force

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current work presents an accurate closed-form model to Microelectro Mechanical System designers for computing static pull-in voltage of electrostatically actuated microbeams with clamped–clamped end condition. The model incorporates the effect of Casimir force including correction for finite conductivity. The Euler–Bernoulli beam equation is adapted considering the effects of mid-plane stretching, residual stress, fringing field and Casimir force to derive the governing differential equation for electrostatically actuated microbeams. The Galerkin method is used with a multimodes reduced-order model to solve the governing differential equation of microbeams. The results obtained using the reduced-order model are further compared with the solution of the boundary value problem and are validated with published numerical and experimental results. The results of the current work indicate that at least three modes in reduced-order model are essential for the prediction of pull-in voltage of microbeams which have a large value of mid-plane stretching parameter. In order to develop a closed-form relation, dimensionless parameters are used to plot the curves of pull-in voltage versus various parameters such as axial force due to residual stress, Casimir force, fringing field, Casimir force including finite conductivity correction, and mid-plane stretching. Based on the relationship observed in the plotted curves for the independent effect and interaction effects of these parameters on static pull-in voltage, a closed-form model is proposed for the computation of static pull-in voltage. Optimised coefficients of the proposed model are determined using nonlinear regression analysis. An adjusted R \(^2\) value equal to 0.99909, a P value equal to zero, and \({\chi }^2\) tolerance equal to \(1\times 10^{-9}\) obtained by statistical analysis exhibit the precision of fitted data, significance of model, and convergence of the fit, respectively. The proposed model is validated by comparing the results of the model with results of boundary value problem solutions, results predicted from reduced-order model and other several reported numerical and experimental results. The proposed model is robust enough for calculating the static pull-in voltage under different conditions with maximum error of 3% when compared to reported experimental and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int. J. Non-Linear Mech. 46, 532–542 (2011)

    Article  Google Scholar 

  2. Soroush, R., Koochi, A., Kazemi, A.S., Noghrehabadi, A., Haddadpour, H., Abadyan, M.: Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Phys. Scr. 82, 045801-1–045801-11 (2010)

  3. Duan, J.S., Rach, R., Wazwaz, A.M.: Solution of the model of beam-type micro- and nano-scale electrostatic actuators by a new modified Adomian decomposition method for nonlinear boundary value problems. Int. J. Non-Linear Mech. 49, 159–169 (2013)

    Article  Google Scholar 

  4. He, X., Wu, Q., Wang, Y., Song, M., Yin, J.: Numerical simulation and analysis of electrically actuated microbeam-based MEMS capacitive switch. Microsyst. Technol. 15, 301–307 (2009)

    Article  Google Scholar 

  5. Zhang, L.X., Zhao, Y.P.: Electromechanical model of RF MEMS switches. Microsyst. Technol. 9, 420–426 (2003)

    Article  Google Scholar 

  6. Legtenberg, R., Tilmans, H.A.C.: Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I. Design and fabrication. Sens. Actuat. A Phys. 45, 57–66 (1994)

  7. Bhushan, A., Inamdar, M.M., Pawaskar, D.N.: Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application. Microsyst. Technol. 17, 1779–1789 (2011)

    Article  Google Scholar 

  8. Sadeghian, H., Rezazadeh, G., Osterberg, P.M.: Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. J. Microelectromech. Syst. 16, 1334–1340 (2007)

    Article  Google Scholar 

  9. Joglekar, M.M., Pawaskar, D.N.: Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst. Technol. 17, 35–45 (2011)

    Article  Google Scholar 

  10. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19, 794–806 (2010)

    Article  Google Scholar 

  11. Batra, R.C., Porfiri, M., Spinello, D.: Review of modelling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)

    Article  Google Scholar 

  12. Osterberg, P.M., Senturia, S.D.: M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)

    Article  Google Scholar 

  13. Pamidighantam, S., Puers, R., Baert, K., Tilmans, H.A.C.: Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J. Micromech. Microeng. 12, 458–464 (2002)

    Article  Google Scholar 

  14. Chao, P.C.P., Chiu, C.W., Liu, T.H.: DC dynamic pull-in predictions for a generalized clamped-clamped micro-beam based on a continuous model and bifurcation analysis. J. Micromech. Microeng. 18, 115008-1–115008-14 (2008)

  15. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)

    Article  Google Scholar 

  16. Zhang, Y., Zhao, Y.P.: Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens. Actuator A Phys. 127, 366–380 (2006)

    Article  Google Scholar 

  17. Gusso, A., Delben, G.J.: Dispersion force for materials relevant for micro- and nanodevices fabrication. J. Phys. D: Appl. Phys. 41, 175405-1–175405-11 (2008)

  18. Rodriguez, A.W., Capasso, F., Johnson, S.G.: The Casimir force effect in microstructured geometries. Nat. Photonics 5, 211–221 (2011)

    Article  Google Scholar 

  19. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JEPT 2, 73–83 (1956)

    Google Scholar 

  20. Svetovoy, V.B., Palasantzas, G.: Influence of surface roughness on dispersion forces. Adv. Colloid Interface Sci. 216, 1–19 (2015)

    Article  Google Scholar 

  21. Batra, R.C., Porfiri, M., Spinello, D.: Effect of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8, 1048–1069 (2008)

    Article  Google Scholar 

  22. Yang, J., Jia, X.L., Kitipornchai, S.: Pull-in instability of nano-switches using nonlocal elasticity theory. J. Phys. D: Appl. Phys. 41, 035103-1–035103-8 (2008)

  23. Mousavi, T., Bornassi, S., Haddadpour, H.: The effect of small scale on the pull-in instability of nano-switches using DQM. Int. J. Solids Struct. 50, 1193–1202 (2013)

    Article  Google Scholar 

  24. Jia, X.L., Yang, J., Kitipornchai, S., Lim, C.W.: Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19, 115028-1–115028-13 (2010)

  25. Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir force. Acta Mech. 218, 161–174 (2011)

    Article  MATH  Google Scholar 

  26. Taghavi, N., Nahvi, H.: Pull-in instability of cantilever and fixed-fixed nano-switches. Eur. J. Mech. A/Solids 41, 123–133 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yu, Y.P., Wu, B.S.: An approach to predicting static response of electrostatically actuated microbeam under the effect of fringing field and Casimir force. Int. J. Mech. Sci. 80, 183–192 (2014)

    Article  Google Scholar 

  28. Bhojawala, V.M., Vakharia, D.P.: Effect of van der Waals force on pull-in voltage, frequency tuning and frequency stability of NEMS devices. Microsyst. Technol. (2016). doi:10.1007/s00542-016-2855-x

    Google Scholar 

  29. Dequesnes, M., Rotkin, S.V., Aluru, N.R.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)

    Article  Google Scholar 

  30. Lin, W.H., Zhao, Y.P.: Casimir effect on the pull-in parameters of nanometer switches. Microsyst. Technol. 11, 80–85 (2005)

    Article  Google Scholar 

  31. Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surfaces forces. Int. J. Solids Struct. 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  32. Tahani, M., Askari, A.R.: Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability. Phys. E 63, 151–159 (2014)

    Article  Google Scholar 

  33. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41, 211–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A reduced-order model for electrically actuated microbeam based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)

    Article  Google Scholar 

  35. Zand, M.M., Ahmadian, M.T.: Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Walls forces. J. Mech. Eng. Sci. 224, 2037–2047 (2010)

    Article  Google Scholar 

  36. Huang, J.M., Liew, K.M., Wong, C.H., Rajendran, S., Tan, M.J., Liu, A.Q.: Mechanical design and optimization of capacitive micromachined switch. Sens. Actuator A Phys. 93, 273–285 (2001)

    Article  Google Scholar 

  37. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Nederl. Akad. Wet. 51, 793–795 (1948)

    MATH  Google Scholar 

  38. Gusso, A., Delben, G.J.: Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators. Sens. Actuator A Phys. 135, 792–800 (2007)

    Article  Google Scholar 

  39. Decca, R.S., Lopez, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long range interactions. Ann. Phys. 318, 37–80 (2005)

    Article  MATH  Google Scholar 

  40. Serry, F.M., Walliser, D., Maclay, G.J.: The Anharmonic Casimir Oscillator (ACO) - The Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 4, 193–205 (1995)

    Article  Google Scholar 

  41. Lamoreaux, S.K.: The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005)

    Article  Google Scholar 

  42. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys. Rep. 61, 062107-1–062107-12 (2000)

  44. Bezerra, V.B., Klimchitskaya, G.L., Mostepanenko, V.M.: Higher order conductivity corrections to the Casimir force. Phys. Rep. 62, 014102-1–014102-4 (2000)

  45. Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Eur. Phys. J. D 8, 309–318 (2000)

    Article  Google Scholar 

  46. Bordag, M., Klimchitskaya, G.L., Mostepanenko, V.M.: Correction to the van der Waals forces in application to atomic force microscopy. Surf. Sci. 328, 129–134 (1995)

    Article  Google Scholar 

  47. van Zwol, P.J., Palasantzas, G., De Hosson, J.T.M.: Influence of random roughness on the Casimir force at small separations. Phys. Rev. B 77, 075412-1–075412-5 (2008)

  48. Delrio, F.W., De Boer, M.P., Knapp, J.A., Reedy Jr., E.D., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)

    Article  Google Scholar 

  49. Bokaian, A.: Natural frequencies of beams under compressive axial loads. J. Sound Vibr. 126, 49–65 (1988)

    Article  Google Scholar 

  50. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonator. Nonlinear Dyn. 48, 153–163 (2007)

    Article  MATH  Google Scholar 

  51. Gutschmidt, S.: The influence of higher-order mode shapes for reduced-order models of electrostatically actuated microbeams. J. Appl. Mech. 77, 041007-1–041007-6 (2010)

  52. Shampine, L.F., Galadwell, I., Thomson, S.: Solving ODEs with MATLAB. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  53. Batra, R.C., Porfiri, M., Spinello, D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15, 1175–1189 (2006)

    Article  Google Scholar 

  54. Krylov, S.: Lyapunov exponent as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Non-linear Mech. 42, 626–642 (2007)

    Article  Google Scholar 

  55. Tilmans, H.A.C., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators, Part II. Theory and performance. Sens. Actuator A Phys. 45, 67–84 (1994)

  56. Kuang, J.H., Chen, C.J.: Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng. 14, 647–655 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bhojawala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhojawala, V.M., Vakharia, D.P. Closed-form relation to predict static pull-in voltage of an electrostatically actuated clamped–clamped microbeam under the effect of Casimir force. Acta Mech 228, 2583–2602 (2017). https://doi.org/10.1007/s00707-017-1843-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1843-2

Navigation