Skip to main content
Log in

Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Internal stress is often encountered in fixed–fixed beam based devices with micron or sub-micron length scales during device fabrication or operation. In this paper, we have investigated the effects of internal stress on static and dynamic characteristics of an electrostatically actuated cylindrical beam. The beam has been modelled using Euler–Bernoulli theory including the nonlinearities due to beam stretching and electrostatic forcing. The analysis has been carried out by solving the governing differential equations using a Galerkin based multi-modal reduced order modelling technique. A standard collocation based numerical scheme has also been used to confirm the results of the reduced order method. Our study shows that internal stress significantly influences the static and dynamic characteristics of the beam. We also find that, when compressive internal stress is high, it is important to include higher modes in the reduced order model. A design technique to achieve high resonant frequency stability under temperature variation, for electrostatically actuated beam oscillators, has also been proposed as a result of this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759–766. doi:10.1088/0960-1317/12/6/306

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16(6):R23–R31. doi:10.1088/0964-1726/16/6/R01

    Article  Google Scholar 

  • Bokaian A (1988) Natural frequencies of beams under compressive axial loads. J Sound Vibr 126(1):49–65. doi:10.1016/0022-460X(88)90397-5

    Article  Google Scholar 

  • Chen S, Baughn TV, Yao ZJ, Goldsmith CL (2002) A new in situ residual stress measurement method for a MEMS thin fixed–fixed beam structure. J Microelectromech Syst 11(4):309–316. doi:10.1109/JMEMS.2002.800936

    Article  Google Scholar 

  • De Pasquale G, Soma A (2010) Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mech Syst Signal Proc 24(6):1621–1633. doi:10.1016/j.ymssp.2010.01.010

    Article  Google Scholar 

  • Dequesnes M, Tang Z, Aluru NR (2004) Static and dynamic analysis of carbon nanotube-based switches. J Eng Mater Technol Trans ASME 126(3):230–237. doi:10.1115/1.1751180

    Article  Google Scholar 

  • Hayt WH (1958) Engineering electromagnetics. Mc Graw-Hill, New York

    Google Scholar 

  • Hopcroft M, Melamud R, Candler RN, Park WT, Kim B, Yama G, Partridge A, Lutz M, Kenny TW (2004) Active temperature compensation for micromachined resonators. In: Solid-state sensor, actuator and microsystems workshop, South Carolina, pp 364–367

  • Hsu WT, Nguyen CTC (2002) Stiffness-compensated temperature-insensitive micromechanical resonators. In: 15th IEEE MEMS 2002, Las Vegas, pp 731–734. doi:10.1109/MEMSYS.2002.984374

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2010) Free vibration of geometrically nonlinear micro-switches under electrostatic and casimir forces. Smart Mater Struct 19(115028):1–13. doi:10.1088/0964-1726/19/11/115028

    Google Scholar 

  • Joglekar MM, Pawaskar DN (2011a) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45. doi:10.1007/s00542-010-1153-2

    Article  Google Scholar 

  • Joglekar MM, Pawaskar DN (2011b) Estimation of oscillation period/switching time for electrostatically actuated microbeam type switches. Int J Mech Sci 53(2):116–125. doi:10.1016/j.ijmecsci.2010.12.001

    Article  Google Scholar 

  • Jun SC, Huang XMH, Hone J (2006) Electrothermal frequency tuning of a nano-resonator. Electron Lett 42(25):1484–1485. doi:10.1049/el:20062883

    Article  Google Scholar 

  • Ke CH, Espinosa HD, Pugno N (2005) Numerical analysis of nanotube based NEMS devices - part II: Role of finite kinematics, stretching and charge concentrations. J Appl Mech Trans ASME 72(5):726–731. doi:10.1115/1.1985435

    Article  MATH  Google Scholar 

  • Kuang JH, Chen CJ (2004) Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J Micromech Microeng 14(4):647–655. doi:10.1088/0960-1317/14/4/028

    Article  Google Scholar 

  • Kwon J, Choi J, Kim K, Sim J, Kim J, Kim J (2009) Frequency tuning of nanowire resonator using electrostatic spring effect. IEEE Trans Magn 45(5):2332–2335. doi:10.1109/TMAG.2009.2016520

    Article  Google Scholar 

  • Lassagne B, Bachtold A (2010) Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing. C R Phys 11(5–6):355–361. doi:10.1016/j.crhy.2010.06.006

    Article  Google Scholar 

  • Leus V, Elata D (2008) On the dynamic responses of electrostatic MEMS switches. J Microelectromech Syst 17(1):236–243. doi:10.1109/JMEMS.2007.908752

    Article  Google Scholar 

  • Melamud R, Kim B, Chandorkar SA, Hopcroft MA, Agarwal M, Jha CM, Kenny TW (2007) Temperature-compensated high-stability silicon resonators. Appl Phys Lett 90(244107):1–3. doi:10.1063/1.2748092

    Google Scholar 

  • Nayfeh AH, Younis MI, Abdel-Rahman EM (2005) Reduced-order models for MEMS applications. Nonlinear Dyn 41(1-3):211–236. doi:10.1007/s11071-005-2809-9

    Article  MathSciNet  MATH  Google Scholar 

  • Ouakad HM, Younis MI (2010) Nonlinear dynamics of electrically actuated carbon nanotube resonators. J Comput Nonlinear Dyn 5(011009):1–13. doi:10.1115/1.4000319

    Google Scholar 

  • Ouakad HM, Younis MI (2011) Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J Sound Vibr 330(13):3182–3195. doi:10.1016/j.jsv.2010.12.029

    Article  Google Scholar 

  • Rasekh M, Khadem SE, Tatari M (2010) Nonlinear behaviour of electrostatically actuated carbon nanotube-based devices. J Phys D Appl Phys 43(315301):1–10. doi:10.1088/0022-3727/43/31/315301

    Google Scholar 

  • Salvia JC, Melamud R, Chandorkar SA, Lord SF, Kenny TW (2010) Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. J Microelectromech Syst 19(1):192–201. doi:10.1109/JMEMS.2009.2035932

    Article  Google Scholar 

  • Shampine LF, Galadwell I, Thomson S (2003) Solving ODEs with MATLAB. Cambridge University Press, New York

    Book  Google Scholar 

  • Solanki HS, Sengupta S, Dhara S, Singh V, Patil S, Dhall R, Parpia J, Bhattacharya A, Deshmukh MM (2010) Tuning mechanical modes and influence of charge screening in nanowire resonators. Phys Rev B 81(115459):1–7. doi:10.1103/PhysRevB.81.115459

    Google Scholar 

  • Soma A, Ballestra A (2009) Residual stress measurement method in MEMS microbeams using frequency shift data. J Micromech Microeng 19(095023):1–16. doi:10.1088/0960-1317/19/9/095023

    Google Scholar 

  • Soma A, De~Pasquale G, Brusa E, Ballestra A (2010) Effect of residual stress on the mechanical behaviour of microswitches at pull-in. Strain 46(4):358–373. doi:10.1111/j.1475-1305.2009.00651.x

    Article  Google Scholar 

  • Subramanian A, Alt AR, Dong L, Kratochvil BE, Bolognesi CR, Nelson BJ (2009) Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures. ACS Nano 3(10):2953–2964. doi:10.1021/nn900436x

    Article  Google Scholar 

  • Sullivan JP, Friedmann TA, Czaplewski DA, Dyck CW, Webster JR, Carton AJ, Carr DW, Keeler BEN, Wendt JR, Tallant DR, Boyce BL, Chen X, Gibson JM (2004) Nano-electromechanical oscillators (NEMOs) for RF technologies. Technical report, Sandia National Laboratories. doi:10.2172/920822

  • Syms RRA (1998) Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators. J Microelectromech Syst 7(2):164–171. doi:10.1109/84.679341

    Article  Google Scholar 

  • Tilmans HAC, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens Actuator A Phys 45(1):67–84. doi:10.1016/0924-4247(94)00813-2

    Article  Google Scholar 

  • Younis MI, Alsaleem F (2009) Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J Comput Nonlinear Dyn 4(021010):1–15. doi:10.1115/1.3079785

    Google Scholar 

  • Younis MI, Abdel-Rahman EM, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680. doi:10.1109/JMEMS.2003.818069

    Article  Google Scholar 

  • Zhang Y, Zhao YP (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuator A Phys 127(2):366–380. doi:10.1016/j.sna.2005.12.045

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Industrial Research and Consultancy Centre, IIT Bombay and the Department of Science and Technology, Government of India. The author would like to thank to Prof. Mandar M. Desmukh and Mr. Hari S. Solanki of Tata Institute of Fundamental Research and Mr. Manish M. Joglekar of IIT Bombay for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Pawaskar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhushan, A., Inamdar, M.M. & Pawaskar, D.N. Investigation of the internal stress effects on static and dynamic characteristics of an electrostatically actuated beam for MEMS and NEMS application. Microsyst Technol 17, 1779–1789 (2011). https://doi.org/10.1007/s00542-011-1367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1367-y

Keywords

Navigation