Skip to main content
Log in

Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We develop novel closed-form empirical relations to estimate the static pull-in parameters of electrostatically actuated tapered width microcantilever beams. A computationally efficient single degree-of-freedom model is employed in the setting of Ritz energy technique to extract the static pull-in parameters of the distributed electromechanical model that takes into account the effects of fringing field capacitance. The accuracy of this single-dof model together with the variable-width equivalent of the Palmer’s fringing model is established through a comparison with 3D finite element simulations. A unique surface fitting model is proposed to characterize the variations of both the pull-in displacement and pull-in voltage, over a realistically wide range of system parameters. Optimum coefficients of the proposed surface fitting model are obtained using nonlinear regression analysis. Empirical estimates of pull-in parameters are validated against finite element simulations, and available experimental and numerical data. An excellent agreement indicates that the proposed relationships are sufficiently accurate to be safely used for the electromechanical design of tapered microcantilever beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdalla M, Reddy C, Faris W, Gürdal Z (2005) Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage. Comput Struct 83(15–16):1320–1329. doi:10.1016/j.compstruc.2004.07.010

    Article  Google Scholar 

  • Ansari M, Cho C (2009) Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors 9(8):6046–6057. doi:10.3390/s90806046

    Article  Google Scholar 

  • Ballestra A, Brusa E, Gh Munteanu M, Somà A (2008) Experimental characterization of electrostatically actuated in-plane bending of microcantilevers. Microsyst Technol 14(7):909–918. doi:10.1007/s00542-008-0597-0

    Article  Google Scholar 

  • Batra R, Porfiri M, Spinello D (2006) Electromechanical model of electrically actuated narrow microbeams. J Microelectromech Syst 15(5):1175–1189. doi:10.1109/JMEMS.2006.880204

    Article  Google Scholar 

  • Batra R, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16(6):R23–R31. doi:10.1088/09641726/16/6/R01

    Article  Google Scholar 

  • Bochobza-Degani O, Elata D, Nemirovsky Y (2002) An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices. J Microelectromech Syst 11(5):612–620. doi:10.1109/JMEMS.2002.803280

    Article  Google Scholar 

  • Chaterjee S, Pohit G (2009) A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322(4–5):969–986. doi:10.1016/j.jsv.2008.11.046

    Article  Google Scholar 

  • Chen KN, Yu SP (2007) Shape optimization of micromachined biosensing cantilevers. In: Proceedings of the technical papers on international microsystem packaging assembly circuits technology conference, IMPACT, pp 301–304. doi:10.1109/IMPACT.2007.4433622

  • Cheng J, Zhe J, Wu X (2004) Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators. J Micromech Microeng 14(1):57–68. doi:10.1088/09601317/14/1/308

    Article  Google Scholar 

  • Chowdhury S, Ahmadi M, Miller W (2005) A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J Micromech Microeng 15(4):756–763. doi:10.1088/0960-1317/15/4/012

    Article  Google Scholar 

  • COMSOL (2008) COMSOL Multiphysics, MEMS module user’s guide. Version 3.5a, COMSOL, Inc

  • Elata D (2005) On the static and dynamic response of electrostatic actuators. Bull Pol Acad Sci Tech Sci 53(4):373–384

    MATH  Google Scholar 

  • Hu Y, Chang C, Huang S (2004) Some design considerations on the electrostatically actuated microstructures. Sens Actuators A Phys 112(1):155–161. doi:10.1016/j.sna.2003.12.012

    Article  Google Scholar 

  • Joglekar M, Pawaskar D (2009) Pull-in dynamics of variable-width electrostatic microactuators. In: Proc bienn conf eng syst des anal. vol 4, pp 327–335

  • Khedmati MR, Zareei MR, Rigo P (2010) Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure. Thin Wall Struct 48(3):274–289. doi:10.1016/j.tws.2009.10.001

    Article  Google Scholar 

  • Koester D, Cowen A, Mahadevan R, Stonefield M, Hardy B (2003) PolyMUMPs design handbook. MEMSCAP

  • Kuang JH, Chen CJ (2004) Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J Micromech Microeng 14(4):647–655. doi:10.1088/09601317/14/4/028

    Article  Google Scholar 

  • Lemaire E, Rochus V, Golinval JC, Duysinx P (2008) Microbeam pull-in voltage topology optimization including material deposition constraint. Comput Methods Appl Mech Eng 197(45–48):4040–4050. doi:10.1016/j.cma.2008.03.024

    Google Scholar 

  • Li G, Aluru N (2001) Linear, nonlinear and mixed-regime analysis of electrostatic MEMS. Sens Actuators A Phys 91(3):278–291. doi:10.1016/S0924-4247(01)00597-0

    Article  Google Scholar 

  • Li M, Huang QA, Li WH (2009) A nodal analysis method for electromechanical behavior simulation of bow-tie shaped microbeams. Microsyst Technol 15(7):985–991. doi:10.1007/s00542-009-0819-0

    Article  Google Scholar 

  • MAT (2010) Curve Fitting Toolbox™, User’s guide. The MathWorks, Inc., Natick

  • Miller M, Perrault J, Parker G, Bettig B, Bifano T (2006) Simple models for piston-type micromirror behavior. J Micromech Microeng 16(2):303–313. doi:10.1088/0960-1317/16/2/015

    Article  Google Scholar 

  • Morshed S, Prorok B (2007) Tailoring beam mechanics towards enhancing detection of hazardous biological species. Exp Mech 47(3):405–415. doi:10.1007/s11340-006-9015-7

    Article  Google Scholar 

  • Najar F, Choura S, El-Borgi S, Abdel-Rahman E, Nayfeh A (2005) Modeling and design of variable geometry electrostatic microactuators. J Micromech Microeng 15(3):419–429. doi:10.1088/0960-1317/15/3/001

    Article  Google Scholar 

  • Osterberg P, Senturia S (1997) M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118. doi:10.1109/84.585788

    Article  Google Scholar 

  • Palmer H (1937) Capacitance of a parallel-plate capacitor by the Schwartz–Christoffel transformation. Trans AIEE 56:363–366

    Google Scholar 

  • Pamidighantam S, Puers R, Baert K, Tilmans H (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J Micromech Microeng 12(4):458–464. doi:10.1088/0960-1317/12/4/319

    Article  Google Scholar 

  • Raulli M, Maute K (2005) Topology optimization of electrostatically actuated microsystems. Struct Mutltidiscip Opt 30(5):342–359. doi:10.1007/s00158-005-0531-3

    Article  Google Scholar 

  • Rezazadeh G, Khatami F, Tahmasebi A (2007) Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors. Microsyst Technol 13(7):715–722. doi:10.1109/SMELEC.2006.381022

    Article  Google Scholar 

  • Rinaldi G, Packirisamy M, Stiharu I (2008) Frequency tuning AFM optical levers using a slot. Microsyst Technol 14(3):361–369. doi:10.1007/s00542-007-0456-4

    Article  Google Scholar 

  • Rochus V, Rixen D, Golinval JC (2005) Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in. Nonlinear Anal Theory Methods Appl 63(5–7):e1619–e1633. doi:10.1016/j.na.2005.01.055

    Article  MATH  Google Scholar 

  • Thielicke E, Obermeier E (2000) Microactuators and their technologies. Mechatronics 10(4):431–455. doi:10.1016/S0957-4158(99)00063-X

    Google Scholar 

  • Wang Q, Li H, Lam K (2007) Analysis of microelectromechanical systems (MEMS) devices by the meshless point weighted least-squares method. Comput Mech 40(1):1–11. doi:10.1007/s00466-006-0077-2

    Article  Google Scholar 

  • Weber R, Wang CH (2005) Tapered-width micro-cantilevers and micro-bridges, US Patent 6876283

  • Younis M, Abdel-Rahman E, Nayfeh A (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12(5):672–680. doi:10.1109/JMEMS.2003.818069

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support extended by the Industrial Research and Consultancy Centre (IRCC), IIT Bombay, through Seed Grant no. 04IR0009. Authors are also thankful to T. Murali, IIT Bombay for his help in performing FE simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Pawaskar.

Appendix

Appendix

In this section, we provide the details of the finite element models discussed earlier in the article (two cases in Table 1 and five cases in Table 4). In all models, quadratic tetrahedral elements are used to mesh both, the electrostatic and structural domain. Large deflection option is set off in order to have a consistent comparison between the present analysis and the FE simulations. For all cases, half width models are analyzed owing to the lateral symmetry of the beam’s cross-section. The pertinent details of the seven finite element models are listed in Table 5. The computation time indicates the time required to estimate the static pull-in parameters of the respective geometry on an Intel™ Core2Quad 2.4 GHz CPU.

Table 5 Details of finite element models and the corresponding computation time

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joglekar, M.M., Pawaskar, D.N. Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17, 35–45 (2011). https://doi.org/10.1007/s00542-010-1153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1153-2

Keywords

Navigation