Skip to main content

Advertisement

Log in

First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Noroviruses (NoVs) and sapoviruses (SaVs), which belong to the family Caliciviridae, are important human and animal enteric pathogens with zoonotic potential. In Ethiopia, no study has been done on the epidemiology of animal NoVs and SaVs. The aim of this study was to detect and characterize NoVs and SaVs from swine of various ages. Swine fecal samples (n = 117) were collected from commercial farms in Ethiopia. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analysis was conducted using a portion of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of genome sequences of caliciviruses. Among 117 samples, potential caliciviruses were detected by RT-PCR in 17 samples (14.5 %). Of the RT-PCR-positive fecal samples, four were sequenced, of which two were identified as human NoV GII.1 and the other two as porcine SaV GIII. The porcine SaV strains that were detected were genetically related to the porcine enteric calicivirus Cowden strain genogroup III (GIII), which is the prototype porcine SaV strain. No porcine NoVs were detected. Our results showed the presence of NoVs in swine that are most similar to human strains. These findings have important implications for NoV epidemiology and food safety. Therefore, continued surveillance of NoVs in swine is needed to define their zoonotic potential, epidemiology and public and animal health impact. This is the first study to investigate enteric caliciviruses (noroviruses and sapoviruses) in swine in Ethiopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saif LJ, Bohl EH, Theil KW, Cross RF, House JA (1980) Rotavirus-like, calicivirus-like, and 23-nm virus-like particles associated with diarrhea in young pigs. J Clin Microbiol 12(1):105–111

    CAS  PubMed  Google Scholar 

  2. Wang QH, Han MG, Funk JA, Bowman G, Janies DA, Saif LJ (2005) Genetic diversity and recombination of porcine sapoviruses. J Clin Microbiol 43:5963–5972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yin Y, Tohya Y, Ogawa Y, Numazawa D, Kato K, Akashi H (2006) Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch Virol 151(9):1749–1759

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura K, Saga Y, Iwai M, Obara M, Horimoto E, Hasegawa S, Kurata T, Okumura H, Nagoshi M, Takizawa T (2010) Frequent detection of noroviruses and sapoviruses in swine and high genetic diversity of porcine sapovirus in Japan during fiscal year 2008. J Clin Microbiol 48:1215–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim HJ, Cho HS, Cho KO, Park NY (2006) Detection and molecular characterization of porcine enteric calicivirus in Korea, genetically related to sapoviruses. J Vet Med B Infect Dis Vet Public Health 53(4):155–159

    Article  CAS  Google Scholar 

  6. Reuter G, Zimsek-Mijovski J, Poljsak-Prijatelj M, Di Bartolo I, Ruggeri FM, Kantala T, Maunula L, Kiss I, Kecskemeti S, Halaihel N, Buesa J, Johnsen C, Hjulsager CK, Larsen LE, Koopmans M, Bottiger B (2010) Incidence, diversity, and molecular epidemiology of sapoviruses in swine across Europe. J Clin Microbiol 48(2):363–368

    Article  CAS  PubMed  Google Scholar 

  7. L’Homme Y, Brassard J, Ouardani M, Gagne MJ (2010) Characterization of novel porcine sapoviruses. Arch Virol 155(6):839–846

    Article  PubMed  Google Scholar 

  8. Song YJ, Yu JN, Nam HM, Bak HR, Lee JB, Park SY, Song CS, Seo KH, Choi IS (2011) Identification of genetic diversity of porcine norovirus and sapovirus in Korea. Virus Genes 42(3):394–401

    Article  CAS  PubMed  Google Scholar 

  9. Dufkova L, Scigalkova I, Moutelikova R, Malenovska H, Prodelalova J (2013) Genetic diversity of porcine sapoviruses, kobuviruses, and astroviruses in asymptomatic pigs: an emerging new sapovirus GIII genotype. Arch Virol 158(3):549–558

    Article  CAS  PubMed  Google Scholar 

  10. Clarke IN, Lambden PR (2000) Organization and expression of calicivirus genes. J Infect Dis 181(Suppl 2):S309–S316

    Article  CAS  PubMed  Google Scholar 

  11. Atmar RL, Estes MK (2001) Diagnosis of non-cultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev 14(1):15–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green KY (2013) Caliciviridae: the noroviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6thed, vol1. Lippincott Williams & Wilkins, Philadelphia, pp 583–609

    Google Scholar 

  13. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS (2006) Norovirus classification and proposed strain nomenclature. Virology 346:312–323

    Article  CAS  PubMed  Google Scholar 

  14. Vega E, Barclay L, Gregoricus N, Shirley SH, Lee D, Vinjé J (2014) Genotypic and Epidemiologic Trends of Norovirus Outbreaks in the United States, 2009 to 2013. J Clin Microbiol 52(1):147–155

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang QH, Han MG, Cheetham S, Souza M, Funk JA, Saif LJ (2005) Porcine noroviruses related to human noroviruses. Emerg Infect Dis 11(12):1874–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Costantini V, Fabienne L, Lynn J, Francoise S, Guyader Le, Saif LJ (2006) Human and animal enteric caliciviruses in Oysters from different coastal regions of the United States. Appl Env Microbiol 72(3):1800–1809

    Article  CAS  Google Scholar 

  17. Phan TG, Okame M, Nguyen TA, Maneekarn N, Nishio O, Okitsu S (2007) Human astrovirus, norovirus (GI, GII), and sapovirus infections in Pakistani children with diarrhea. J Med Virol 79:633–638

    Article  PubMed  Google Scholar 

  18. Mattison K, Shukla A, Cook A, Pollari F, Friendship R, Kelton D, Bidawid S, Farber JM (2007) Human noroviruses in swine and cattle. Emerg Infect Dis 13:1184–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farkas T, Zhong WM, Jing Y, Huang PW, Espinosa SM, Martinez N, Morrow AL, Ruiz-Palacios GM, Pickering LK, Jiang X (2004) Genetic diversity among sapoviruses. Arch Virol 149:1309–1323

    Article  CAS  PubMed  Google Scholar 

  20. Oka T, Mori K, Iritani N, Harada S, Ueki Y, Iizuka S, Mise K, Murakami K, Wakita T, Katayama K (2012) Human sapovirus classification based on complete capsid nucleotide sequences. Arch Virol 157(2):349–352

    Article  CAS  PubMed  Google Scholar 

  21. Sisay Z, Wang QH, Oka T, Saif LJ (2013) Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Arch Virol 158(7):1583–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scheuer AK, Oka T, Hoet AE, Gebreyes WA, Molla BZ, Saif LJ, Wang QH (2013) Prevalence of porcine Noroviruses, molecular characterization of emerging porcine Sapoviruses from finisher swine in the United States, and unified classification scheme for Sapoviruses. J Clin Microbiol 51(7):2344–2353

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, Saif LJ (1999) Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J Virol 73(962):5–31

    Google Scholar 

  24. Kojima S, Kageyama T, Fukushi S, Hoshino FB, Shinohara M, Uchida K, Natori K, Takeda N, Katayama K (2002) Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods 100:107–114

    Article  CAS  PubMed  Google Scholar 

  25. Guo M, Hayes J, Cho KO, Parwani AV, Lucas LM, Saif LJ (2001) Comparative pathogenesis of tissue culture-adapted and wild-type cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol 75(19):9239–9251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang X, Huang PW, Zhong WM, Farkas T, Cubitt DW, Matson DO (1999) Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J Virol Methods 83:145–154

    Article  CAS  PubMed  Google Scholar 

  27. Le Guyader F, Neill FH, Estes MK, Monroe SS, Ando T, Atmar RL (1996) Detection and analysis of a small round-structured virus strain in oysters implicated in an outbreak of acute gastroenteritis. Appl Environ Microbiol 62(11):4268–4272

    PubMed  PubMed Central  Google Scholar 

  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  30. Wang QH, Souza M, Funk JA, Zhang W, Saif LJ (2006) Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J Clin Microbiol 44(6):2057–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mauroy A, Scipioni A, Mathijs E, Miry C, Ziant D, Thys C, Thiry E (2008) Noroviruses and sapoviruses in pigs in Belgium. Arch Virol 153:1927–1931

    Article  CAS  PubMed  Google Scholar 

  32. Wolf S, Williamson W, Hewitt J, Lin S, Rivera-Aban M, Ball A, Scholes P, Savill M, Greening GE (2009) Molecular detection of norovirus in sheep and pigs in New Zealand farms. Vet Microbiol 133:184–189

    Article  CAS  PubMed  Google Scholar 

  33. Cunha JB, de Mendonca MCL, Miagostovich MP, Leite JPG (2010) Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch Virol 155:1301–1305

    Article  CAS  PubMed  Google Scholar 

  34. Sisay Z, Djikeng A, Berhe N, Belay B, Gebreyes W, Abegaz EW, Njahira NM, Wang QH, Saif LJ (2016) Prevalence and molecular characterization of human noroviruses and sapoviruses in Ethiopia. Arch Virol. doi:10.1007/s00705-016-2887-7

    Google Scholar 

  35. Chao DY, Wei JY, Chang WF, Wang J, Wang LC (2012) Detection of multiple genotypes of calicivirus infection in asymptomatic swine in Taiwan. Zoonoses Public Health 59:434–444

    Article  PubMed  Google Scholar 

  36. Farkas T, Nakajima S, Sugieda M, Deng ZW (2005) Seroprevalence of noroviruses in Swine. J Clin Microbiol 43(2):657–661

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ (2006) Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 80:10372–10381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takanashi S, Hashira S, Matsunaga T, Yoshida A, Shiota T, Tung PG, Khamrin P, Okitsu S, Mizuguchi M, Igarashi T, Ushijima H (2009) Detection, genetic characterization, and quantification of norovirus RNA from sera of children with gastroenteritis. J Clin Virol 44:161–163

    Article  CAS  PubMed  Google Scholar 

  39. van Der Poel WH, Vinje J, van Der Heide R, Herrera MI, Vivo A, Koopmans MP (2000) Norwalk-like calicivirus genes in farm animals. Emerg Infect Dis 6:36–41

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of the swine farm, particularly Dr. Nitsuh, who helped with sample collection. We are very grateful to Dr. Girmay Medhin for his assistance and encouragement. We appreciate the support of the Segolip unit of BecA-ILRI Hub in sequencing the samples from this study. We are also grateful for the cooperation and support of the Department of Molecular, Cellular and Biological Sciences, and Aklilu Lemma Institute of Pathobiology, Addis Ababa University, in facilitating the successful accomplishment of the project. We gratefully acknowledge the financial support of the African Biosciences Challenge Fund (ABCF)/ Biosciences east and central Africa (BecA). We also thank the VPH-Biotech East Africa Consortium and the National Institutes of Health-Fogarty (Fogarty Grant D43TW008650, The Ohio State University) and Dr. Wondwossen Gebreyes, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zufan Sisay.

Ethics declarations

Funding

This project was supported by the VPH-Biotech East Africa Consortium and the National Institutes of Health-Fogarty (Fogarty Grant D43TW008650, W Gebreyes, PI, The Ohio State University) and BecA-ILRI Hub through the Africa Biosciences Challenge Fund (ABCF) program. The ABCF Program is funded by the Australian Department for Foreign Affairs and Trade (DFAT) through the BecA-CSIRO partnership, the Syngenta Foundation for Sustainable Agriculture (SFSA), the Bill & Melinda Gates Foundation (BMGF), the UK Department for International Development (DFID), and the Swedish International Development Cooperation Agency (Sida).

Conflict of interest

None.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisay, Z., Djikeng, A., Berhe, N. et al. First detection and molecular characterization of sapoviruses and noroviruses with zoonotic potential in swine in Ethiopia. Arch Virol 161, 2739–2747 (2016). https://doi.org/10.1007/s00705-016-2974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2974-9

Keywords

Navigation