Skip to main content

Advertisement

Log in

Therapeutic neovascularization for coronary disease: current state and future prospects

  • Invited Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Despite advances in surgical and percutaneous revascularization techniques, nearly one-third of patients with ischemic coronary artery disease are not candidates for revascularization due to suboptimal anatomy or receive suboptimal revascularization from these standard procedures. Neovascularization of the myocardium is not only a physiologic response to ischemia, but also potentially the target of new therapeutic strategies. Induced angiogenesis via protein, gene, and cell-based therapies showed initial promise in experiments using otherwise healthy laboratory animals. However, failure to translate these gains into humans prompted further study into the vascular environment and endothelial dysfunction. Understanding that factors such as hypertension, diabetes, and hyperlipidemia are not only placing patients at risk for coronary artery disease but also undermining our attempts in neovascularization therapies, has prompted us to rethink our therapeutic approach. Future directions for therapeutic neovascularization lie in therapies combining optimization of the vascular environment, improvement of endothelial function and other aspects of vascular formation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaci A, Oguzhan A, Kahraman S, Eryol NK, Unal S, Arinc H, Ergin A (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99(17):2239–2242

    PubMed  CAS  Google Scholar 

  2. Acevedo VD, Ittmann M, Spencer DM (2009) Paths of FGFR-driven tumorigenesis. Cell Cycle 8 (4):580-588. pii:7657

    Google Scholar 

  3. Arnal JF, Yamin J, Dockery S, Harrison DG (1994) Regulation of endothelial nitric oxide synthase mRNA, protein, and activity during cell growth. Am J Physiol 267(5 Pt 1):C1381–C1388

    PubMed  CAS  Google Scholar 

  4. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355(12):1222–1232. doi:10.1056/NEJMoa051779

    Article  PubMed  CAS  Google Scholar 

  5. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 82(9):1007–1015

    PubMed  CAS  Google Scholar 

  6. Balk EM, Karas RH, Jordan HS, Kupelnick B, Chew P, Lau J (2004) Effects of statins on vascular structure and function: a systematic review. Am J Med 117(10):775–790. doi:10.1016/j.amjmed.2004.05.026

    Article  PubMed  CAS  Google Scholar 

  7. Bernotat-Danielowski S, Sharma HS, Schott RJ, Schaper W (1993) Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischaemic collateralised porcine myocardium. Cardiovasc Res 27(7):1220–1228

    Article  PubMed  CAS  Google Scholar 

  8. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, Baek SH, Rhie JW, Kim BS (2011) Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32(11):2734–2747. doi:10.1016/j.biomaterials.2010.12.035

    Article  PubMed  CAS  Google Scholar 

  9. Biswas SS, Hughes GC, Scarborough JE, Domkowski PW, Diodato L, Smith ML, Landolfo C, Lowe JE, Annex BH, Landolfo KP (2004) Intramyocardial and intracoronary basic fibroblast growth factor in porcine hibernating myocardium: a comparative study. J Thorac Cardiovasc Surg 127(1):34–43. doi:10.1016/j.jtcvs.2003.07.003

    Article  PubMed  CAS  Google Scholar 

  10. Boodhwani M, Mieno S, Voisine P, Feng J, Sodha N, Li J, Sellke FW (2006) High-dose atorvastatin is associated with impaired myocardial angiogenesis in response to vascular endothelial growth factor in hypercholesterolemic swine. J Thorac Cardiovasc Surg 132(6):1299–1306. doi:10.1016/j.jtcvs.2006.05.060

    Article  PubMed  CAS  Google Scholar 

  11. Boodhwani M, Nakai Y, Mieno S, Voisine P, Bianchi C, Araujo EG, Feng J, Michael K, Li J, Sellke FW (2006) Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: role of endostatin and oxidative stress. Ann Thorac Surg 81(2):634–641. doi:10.1016/j.athoracsur.2005.07.090

    Article  PubMed  Google Scholar 

  12. Boodhwani M, Nakai Y, Voisine P, Feng J, Li J, Mieno S, Ramlawi B, Bianchi C, Laham R, Sellke FW (2006) High-dose atorvastatin improves hypercholesterolemic coronary endothelial dysfunction without improving the angiogenic response. Circulation 114(1 Suppl):I402–I408. doi:10.1161/CIRCULATIONAHA.105.000356

    PubMed  Google Scholar 

  13. Boodhwani M, Sellke FW (2009) Therapeutic angiogenesis in diabetes and hypercholesterolemia: influence of oxidative stress. Antioxid Redox Signal 11(8):1945–1959. doi:10.1089/ARS.2009.2439

    Article  PubMed  CAS  Google Scholar 

  14. Boodhwani M, Sodha NR, Mieno S, Ramlawi B, Xu SH, Feng J, Clements RT, Ruel M, Sellke FW (2007) Insulin treatment enhances the myocardial angiogenic response in diabetes. J Thorac Cardiovasc Surg 134(6):1453–1460. doi:10.1016/j.jtcvs.2007.08.025 (discussion 1460)

    Article  PubMed  CAS  Google Scholar 

  15. Boodhwani M, Sodha NR, Mieno S, Xu SH, Feng J, Ramlawi B, Clements RT, Sellke FW (2007) Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation 116(11 Suppl):I31–I37. doi:10.1161/CIRCULATIONAHA.106.680157

    PubMed  Google Scholar 

  16. Boodhwani M, Voisine P, Ruel M, Sodha NR, Feng J, Xu SH, Bianchi C, Sellke FW (2008) Comparison of vascular endothelial growth factor and fibroblast growth factor-2 in a swine model of endothelial dysfunction. Eur J Cardiothorac Surg 33(4):645–650. doi:10.1016/j.ejcts.2007.12.016 (discussion 251-642)

    Article  PubMed  Google Scholar 

  17. Brownsey RW, Boone AN, Allard MF (1997) Actions of insulin on the mammalian heart: metabolism, pathology and biochemical mechanisms. Cardiovasc Res 34 (1):3–24

    Google Scholar 

  18. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    PubMed  CAS  Google Scholar 

  19. Casscells W, Speir E, Sasse J, Klagsbrun M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J et al (1990) Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest 85(2):433–441. doi:10.1172/JCI114456

    Article  PubMed  CAS  Google Scholar 

  20. Chu L, Robich M, Lassaletta A, Feng J, Laham R, Burgess T, Clements R, Sellke F (2011) Resveratrol supplementation abrogates pro-angiogenic effects of intramyocardial VEGF in a hypercholesterolemic swine model of chronic ischemia. Surgery (in press)

  21. Cohen RA, Zitnay KM, Haudenschild CC, Cunningham LD (1988) Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res 63(5):903–910

    PubMed  CAS  Google Scholar 

  22. Cuevas P, Carceller F, Ortega S, Zazo M, Nieto I, Gimenez-Gallego G (1991) Hypotensive activity of fibroblast growth factor. Science 254(5035):1208–1210

    Article  PubMed  CAS  Google Scholar 

  23. Deiner C, Schwimmbeck PL, Koehler IS, Loddenkemper C, Noutsias M, Nikol S, Schultheiss HP, Yla-Herttuala S, Pels K (2006) Adventitial VEGF165 gene transfer prevents lumen loss through induction of positive arterial remodeling after PTCA in porcine coronary arteries. Atherosclerosis 189(1):123–132. doi:10.1016/j.atherosclerosis.2005.12.008

    Article  PubMed  CAS  Google Scholar 

  24. Demyanets S, Kaun C, Rychli K, Pfaffenberger S, Kastl SP, Hohensinner PJ, Rega G, Katsaros KM, Afonyushkin T, Bochkov VN, Paireder M, Huk I, Maurer G, Huber K, Wojta J (2011) Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3 K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-gamma. Basic Res Cardiol 106(2):217–231. doi:10.1007/s00395-010-0141-0

    Article  PubMed  CAS  Google Scholar 

  25. Detillieux KA, Sheikh F, Kardami E, Cattini PA (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57 (1):8–19. pii:S0008636302007083

    Google Scholar 

  26. Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J (2010) Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol 105(1):61–71. doi:10.1007/s00395-009-0047-x

    Article  PubMed  CAS  Google Scholar 

  27. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group (1993). N Engl J Med 329(14):977–986. doi:10.1056/NEJM199309303291401

    Google Scholar 

  28. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271(5252):1116–1120

    Article  PubMed  CAS  Google Scholar 

  29. Formiga FR, Pelacho B, Garbayo E, Abizanda G, Gavira JJ, Simon-Yarza T, Mazo M, Tamayo E, Jauquicoa C, Ortiz-de-Solorzano C, Prosper F, Blanco-Prieto MJ (2010) Sustained release of VEGF through PLGA microparticles improves vasculogenesis and tissue remodeling in an acute myocardial ischemia-reperfusion model. J Control Release 147(1):30–37. doi:10.1016/j.jconrel.2010.07.097

    Article  PubMed  CAS  Google Scholar 

  30. Fuchs S, Dib N, Cohen BM, Okubagzi P, Diethrich EB, Campbell A, Macko J, Kessler PD, Rasmussen HS, Epstein SE, Kornowski R (2006) A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv 68(3):372–378. doi:10.1002/ccd.20859

    Article  PubMed  Google Scholar 

  31. Fukuda S, Kaga S, Zhan L, Bagchi D, Das DK, Bertelli A, Maulik N (2006) Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1. Cell Biochem Biophys 44(1):43–49. doi:10.1385/CBB:44:1:043

    Article  PubMed  CAS  Google Scholar 

  32. Gaffney MM, Hynes SO, Barry F, O’Brien T (2007) Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 152(2):175–188. doi:10.1038/sj.bjp.0707315

    Article  PubMed  CAS  Google Scholar 

  33. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88(2):167–174

    PubMed  CAS  Google Scholar 

  34. Gossl M, Herrmann J, Tang H, Versari D, Galili O, Mannheim D, Rajkumar SV, Lerman LO, Lerman A (2009) Prevention of vasa vasorum neovascularization attenuates early neointima formation in experimental hypercholesterolemia. Basic Res Cardiol 104(6):695–706. doi:10.1007/s00395-009-0036-0

    Article  PubMed  Google Scholar 

  35. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100(10):1134–1146

    PubMed  CAS  Google Scholar 

  36. Grundy SM, Garber A, Goldberg R, Havas S, Holman R, Lamendola C, Howard WJ, Savage P, Sowers J, Vega GL (2002) Prevention conference VI: diabetes and cardiovascular disease: writing group IV: lifestyle and medical management of risk factors. Circulation 105(18):e153–e158

    Article  PubMed  Google Scholar 

  37. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103(6):525–536. doi:10.1007/s00395-008-0741-0

    Article  PubMed  Google Scholar 

  38. Hasdai D, Mathew V, Schwartz RS, Holmes DR Jr, Lerman A (1997) The effect of basic fibroblast growth factor on coronary vascular tone in experimental hypercholesterolemia in vivo and in vitro. Coron Artery Dis 8(5):299–304

    Article  PubMed  CAS  Google Scholar 

  39. Hasdai D, Mathew V, Schwartz RS, Smith LA, Holmes DR Jr, Katusic ZS, Lerman A (1997) Enhanced endothelin-B-receptor-mediated vasoconstriction of small porcine coronary arteries in diet-induced hypercholesterolemia. Arterioscler Thromb Vasc Biol 17(11):2737–2743

    Article  PubMed  CAS  Google Scholar 

  40. Hasdai D, Nielsen MF, Rizza RA, Holmes DR Jr, Richardson DM, Cohen P, Lerman A (1999) Attenuated in vitro coronary arteriolar vasorelaxation to insulin-like growth factor I in experimental hypercholesterolemia. Hypertension 34(1):89–95

    PubMed  CAS  Google Scholar 

  41. Health, United States 2009: with special feature on medical technology (2009) National Center for Health Sciences, Hyattsville

  42. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A, Vanninen E, Mussalo H, Kauppila E, Simula S, Narvanen O, Rantala A, Peuhkurinen K, Nieminen MS, Laakso M, Yla-Herttuala S (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 107(21):2677–2683. doi:10.1161/01.CIR.0000070540.80780.92

    Article  PubMed  CAS  Google Scholar 

  43. Hedman M, Muona K, Hedman A, Kivela A, Syvanne M, Eranen J, Rantala A, Stjernvall J, Nieminen MS, Hartikainen J, Yla-Herttuala S (2009) Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther 16(5):629–634. doi:10.1038/gt.2009.4

    Article  PubMed  CAS  Google Scholar 

  44. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365

    Article  PubMed  CAS  Google Scholar 

  45. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288(3):H984–H999. doi:10.1152/ajpheart.01109.2004

    Article  PubMed  CAS  Google Scholar 

  46. Hughes GC, Biswas SS, Yin B, Coleman RE, DeGrado TR, Landolfo CK, Lowe JE, Annex BH, Landolfo KP (2004) Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg 77(3):812–818. doi:10.1016/j.athoracsur.2003.09.060

    Article  PubMed  Google Scholar 

  47. Jiang Y, Chen L, Tang Y, Ma G, Shen C, Qi C, Zhu Q, Yao Y, Liu N (2010) HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study. Basic Res Cardiol 105(3):431–442. doi:10.1007/s00395-009-0079-2

    Article  PubMed  CAS  Google Scholar 

  48. Jozkowicz A, Cooke JP, Guevara I, Huk I, Funovics P, Pachinger O, Weidinger F, Dulak J (2001) Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc Res 51(4):773–783. pii:S0008636301003443

    Google Scholar 

  49. Kaga S, Zhan L, Matsumoto M, Maulik N (2005) Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol 39(5):813–822. doi:10.1016/j.yjmcc.2005.08.003

    Article  PubMed  CAS  Google Scholar 

  50. Karasu C (2000) Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species. Eur J Pharmacol 392(3):163–173. pii:S0014299900001400

    Google Scholar 

  51. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC (2009) Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol 104(6):739–749. doi:10.1007/s00395-009-0039-x

    Article  PubMed  Google Scholar 

  52. Laham R, Simons M (2000) Growth factor therapy in ischemic heart disease. In: Rubanyi G (ed) Angiogenesis in health and disease. Marcel Decker, New York, pp 451–475

    Google Scholar 

  53. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, Hoyt G, Yang P, Rosenberg J, Robbins RC, Wu JC (2009) Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol 53(14):1229–1240. doi:10.1016/j.jacc.2008.12.036

    Article  PubMed  CAS  Google Scholar 

  54. Lippi G, Franchini M, Favaloro EJ, Targher G (2010) Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”. Semin Thromb Hemost 36(1):59–70. doi:10.1055/s-0030-1248725

    Article  PubMed  CAS  Google Scholar 

  55. Lopez JJ, Laham RJ, Stamler A, Pearlman JD, Bunting S, Kaplan A, Carrozza JP, Sellke FW, Simons M (1998) VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 40(2):272–281. pii:S0008636398001369

    Google Scholar 

  56. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 109(21):2487–2491. doi:10.1161/01.CIR.0000128595.79378.FA

    Article  PubMed  Google Scholar 

  57. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 109(22):2692–2697. doi:10.1161/01.CIR.0000128596.49339.05

    Article  PubMed  Google Scholar 

  58. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, Schatz RA, Asahara T, Isner JM, Kuntz RE (2002) Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105(17):2012–2018

    Article  PubMed  CAS  Google Scholar 

  59. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 355(12):1199–1209. doi:10.1056/NEJMoa055706

    Article  PubMed  CAS  Google Scholar 

  60. Madeddu P (2010) Stem cell therapy for cardiovascular regeneration: the beginning or the end of all hearts’ hopes. Pharmacol Ther 129(1):1–2. doi:10.1016/j.pharmthera.2010.09.006

    Article  PubMed  Google Scholar 

  61. Mason RP, Walter MF, Jacob RF (2004) Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress. Circulation 109(21 Suppl 1):II34–II41. doi:10.1161/01.CIR.0000129503.62747.03

    PubMed  Google Scholar 

  62. Maulik N (2002) Redox signaling of angiogenesis. Antioxid Redox Signal 4(5):805–815. doi:10.1089/152308602760598963

    Article  PubMed  CAS  Google Scholar 

  63. Maulik N (2006) Reactive oxygen species drives myocardial angiogenesis? Antioxid Redox Signal 8(11–12):2161–2168. doi:10.1089/ars.2006.8.2161

    Article  PubMed  CAS  Google Scholar 

  64. Menasche P (2009) Stem cell therapy for heart failure: are arrhythmias a real safety concern? Circulation 119(20):2735–2740. doi:10.1161/CIRCULATIONAHA.108.812693

    Article  PubMed  Google Scholar 

  65. Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234(1):204–215. doi:10.1006/dbio.2001.0254

    Article  PubMed  CAS  Google Scholar 

  66. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 270(1 Pt 2):H411–H415

    PubMed  CAS  Google Scholar 

  67. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714. doi:10.1242/dev.030338

    Article  PubMed  CAS  Google Scholar 

  68. Nakai Y, Voisine P, Bianchi C, Xu SH, Feng J, Malik T, Rosinberg A, Sellke FW (2005) Effects of l-arginine on the endogenous angiogenic response in a model of hypercholesterolemia. Surgery 138(2):291–298. doi:10.1016/j.surg.2005.06.013

    Article  PubMed  Google Scholar 

  69. Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by micro RNAs. Basic Res Cardiol 106(1):5–11. doi:10.1007/s00395-010-0139-7

    Article  PubMed  CAS  Google Scholar 

  70. Papapetropoulos A, Desai KM, Rudic RD, Mayer B, Zhang R, Ruiz-Torres MP, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol 150(5):1835–1844

    PubMed  CAS  Google Scholar 

  71. Penumathsa SV, Thirunavukkarasu M, Koneru S, Juhasz B, Zhan L, Pant R, Menon VP, Otani H, Maulik N (2007) Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J Mol Cell Cardiol 42(3):508–516. doi:10.1016/j.yjmcc.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  72. Poss J, Werner C, Lorenz D, Gensch C, Bohm M, Laufs U (2010) The renin inhibitor aliskiren upregulates pro-angiogenic cells and reduces atherogenesis in mice. Basic Res Cardiol 105(6):725–735. doi:10.1007/s00395-010-0120-5

    Article  PubMed  Google Scholar 

  73. Putnam D (2006) Polymers for gene delivery across length scales. Nat Mater 5(6):439–451. doi:10.1038/nmat1645

    Article  PubMed  CAS  Google Scholar 

  74. Rangappa S, Makkar R, Forrester J (2010) Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther 15(4):338–343. doi:10.1177/1074248410376382

    Article  PubMed  Google Scholar 

  75. Robich MP, Chu LM, Chaudray M, Nezafat R, Han Y, Clements RT, Laham RJ, Manning WJ, Coady MA, Sellke FW (2010) Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery 148(2):453–462. doi:10.1016/j.surg.2010.04.013

    Article  PubMed  Google Scholar 

  76. Robich MP, Matyal R, Chu LM, Feng J, Xu SH, Laham RJ, Hess PE, Bianchi C, Sellke FW (2010) Effects of neuropeptide Y on collateral development in a swine model of chronic myocardial ischemia. J Mol Cell Cardiol 49(6):1022–1030. doi:10.1016/j.yjmcc.2010.08.022

    Article  PubMed  CAS  Google Scholar 

  77. Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, Boodhwani M, Coady MA, Laham RJ, Sellke FW (2010) Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation 122(11 Suppl):S142–S149. doi:10.1161/CIRCULATIONAHA.109.920132

    Article  PubMed  CAS  Google Scholar 

  78. Ruel M, Beanlands RS, Lortie M, Chan V, Camack N, deKemp RA, Suuronen EJ, Rubens FD, DaSilva JN, Sellke FW, Stewart DJ, Mesana TG (2008) Concomitant treatment with oral l-arginine improves the efficacy of surgical angiogenesis in patients with severe diffuse coronary artery disease: the endothelial modulation in angiogenic therapy randomized controlled trial. J Thorac Cardiovasc Surg 135(4):762–770, 770 e761. doi:10.1016/j.jtcvs.2007.09.073

    Google Scholar 

  79. Ruel M, Wu GF, Khan TA, Voisine P, Bianchi C, Li J, Laham RJ, Sellke FW (2003) Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a Swine endothelial dysfunction model. Circulation 108(Suppl 1):II335–II340. doi:10.1161/01.cir.0000087903.75204.ad

    PubMed  Google Scholar 

  80. Sasso FC, Torella D, Carbonara O, Ellison GM, Torella M, Scardone M, Marra C, Nasti R, Marfella R, Cozzolino D, Indolfi C, Cotrufo M, Torella R, Salvatore T (2005) Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 46(5):827–834. doi:10.1016/j.jacc.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  81. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221. doi:10.1056/NEJMoa060186

    Article  PubMed  CAS  Google Scholar 

  82. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104(1):5–21. doi:10.1007/s00395-008-0760-x

    Article  PubMed  CAS  Google Scholar 

  83. Scholz D, Cai WJ, Schaper W (2001) Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4(4):247–257

    Article  PubMed  CAS  Google Scholar 

  84. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Simons M (1996) Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol 271(2 Pt 2):H713–H720

    PubMed  CAS  Google Scholar 

  85. Serwe A, Rudolph K, Anke T, Erkel G (2011) Inhibition of TGF-beta signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest New Drugs. doi:10.1007/s10637-011-9643-3

  86. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90(12):1243–1250

    Article  PubMed  CAS  Google Scholar 

  87. Shishido T, Tasaki K, Takeishi Y, Takasaki S, Miyamoto T, Itoh M, Takahashi H, Kubota I, Ito T, Katano Y, Wakabayashi I, Tomoike H (2004) Chronic hypertriglyceridemia in young watanabe heritable hyperlipidemic rabbits impairs endothelial and medial smooth muscle function. Life Sci 74(12):1487–1501. pii:S0024320503010373

    Google Scholar 

  88. Sieber CC, Sumanovski LT, Stumm M, van der Kooij M, Battegay E (2001) In vivo angiogenesis in normal and portal hypertensive rats: role of basic fibroblast growth factor and nitric oxide. J Hepatol 34(5):644–650. pii:S0168-8278(00)00064-7

    Google Scholar 

  89. Silberbauer K, Clopath P, Sinzinger H, Schernthaner G (1980) Effect of experimentally induced diabetes on swine vascular prostacyclin (PGI2) synthesis. Artery 8(1):30–36

    PubMed  CAS  Google Scholar 

  90. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105(7):788–793

    Article  PubMed  CAS  Google Scholar 

  91. Slavin J (1995) Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 19(5):431–444. doi:10.1006/cbir.1995.1087

    Article  PubMed  CAS  Google Scholar 

  92. Smart N, Dube KN, Riley PR (2009) Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol 90(3):262–283. doi:10.1111/j.1365-2613.2009.00646.x

    Article  PubMed  CAS  Google Scholar 

  93. Standards of medical care in diabetes (2005) Diabetes Care 28(Suppl 1):S4–S36. pii:28/suppl_1/s4

    Google Scholar 

  94. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438. doi:10.1038/7434

    Article  PubMed  CAS  Google Scholar 

  95. Toblli JE, Cao G, DeRosa G, Di Gennaro F, Forcada P (2004) Angiotensin-converting enzyme inhibition and angiogenesis in myocardium of obese Zucker rats. Am J Hypertens 17(2):172–180

    Article  PubMed  CAS  Google Scholar 

  96. Toblli JE, Cao G, Giani JF, Angerosa M, Dominici FP, Gonzalez-Cadavid NF (2011) Antifibrotic effects of pioglitazone at low doses on the diabetic rat kidney are associated with the improvement of markers of cell turnover, tubular and endothelial integrity, and angiogenesis. Kidney Blood Press Res 34(1):20–33. doi:10.1159/000320380

    Article  PubMed  CAS  Google Scholar 

  97. Tofukuji M, Metais C, Li J, Franklin A, Simons M, Sellke FW (1998) Myocardial VEGF expression after cardiopulmonary bypass and cardioplegia. Circulation 98(19 Suppl):II242–II246 (discussion II247-248)

    PubMed  CAS  Google Scholar 

  98. Tomanek RJ (2005) Formation of the coronary vasculature during development. Angiogenesis 8(3):273–284. doi:10.1007/s10456-005-9014-9

    Article  PubMed  Google Scholar 

  99. Toyota E, Matsunaga T, Chilian WM (2004) Myocardial angiogenesis. Mol Cell Biochem 264(1–2):35–44

    Article  PubMed  CAS  Google Scholar 

  100. Uhlmann S, Friedrichs U, Eichler W, Hoffmann S, Wiedemann P (2001) Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc Res 62(2):179–189. doi:10.1006/mvre.2001.2334

    Article  PubMed  CAS  Google Scholar 

  101. Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E (2007) Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J 28(21):2667–2677. doi:10.1093/eurheartj/ehm426

    Article  PubMed  Google Scholar 

  102. van Etten RW, de Koning EJ, Verhaar MC, Gaillard CA, Rabelink TJ (2002) Impaired NO-dependent vasodilation in patients with Type II (non-insulin-dependent) diabetes mellitus is restored by acute administration of folate. Diabetologia 45(7):1004–1010. doi:10.1007/s00125-002-0862-1

    Article  PubMed  Google Scholar 

  103. Voisine P, Bianchi C, Ruel M, Malik T, Rosinberg A, Feng J, Khan TA, Xu SH, Sandmeyer J, Laham RJ, Sellke FW (2004) Inhibition of the cardiac angiogenic response to exogenous vascular endothelial growth factor. Surgery 136(2):407–415. doi:10.1016/j.surg.2004.05.017

    Article  PubMed  Google Scholar 

  104. Wafai R, Tudor EM, Angus JA, Wright CE (2009) Vascular effects of FGF-2 and VEGF-B in rabbits with bilateral hind limb ischemia. J Vasc Res 46(1):45–54. doi:10.1159/000139132

    Article  PubMed  CAS  Google Scholar 

  105. Wautier JL, Schmidt AM (2004) Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 95(3):233–238. doi:10.1161/01.RES.0000137876.28454.64

    Article  PubMed  CAS  Google Scholar 

  106. White MF (2003) Insulin signaling in health and disease. Science 302(5651):1710–1711. doi:10.1126/science.1092952

    Article  PubMed  CAS  Google Scholar 

  107. Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC (2010) Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol 105(2):267–277. doi:10.1007/s00395-009-0055-x

    Article  PubMed  CAS  Google Scholar 

  108. Wykrzykowska JJ, Rosinberg A, Lee SU, Voisine P, Wu G, Appelbaum E, Boodhwani M, Sellke FW, Laham RJ (2010) Autologous cardiomyotissue implantation promotes myocardial regeneration, decreases infarct size, and improves left ventricular function. Circulation 123(1):62–69. doi:10.1161/CIRCULATIONAHA.108.832469

    Article  PubMed  Google Scholar 

  109. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248. doi:10.1038/35025215

    Article  PubMed  CAS  Google Scholar 

  110. Yu Y, Gao Y, Qin J, Kuang CY, Song MB, Yu SY, Cui B, Chen JF, Huang L (2010) CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury. Basic Res Cardiol 105(6):713–724. doi:10.1007/s00395-010-0117-0

    Article  PubMed  CAS  Google Scholar 

  111. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL, Hofmann SM, Vlassara H, Shi Y (2003) Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 108(4):472–478. doi:10.1161/01.CIR.0000080378.96063.23

    Article  PubMed  CAS  Google Scholar 

  112. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94(5):2036–2044. doi:10.1172/JCI117557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided to Frank W. Sellke through the National Heart, Lung and Blood Institute of the National Institute of Health (R01-HL046716, R01-HL069024, R01-HL85647), to Antonio D. Lassaletta through a National Institute of Health training grant (5T32-HL076134-05), and to Louis M. Chu through a National Institute of Health training grant (T32-HL094300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Sellke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassaletta, A.D., Chu, L.M. & Sellke, F.W. Therapeutic neovascularization for coronary disease: current state and future prospects. Basic Res Cardiol 106, 897–909 (2011). https://doi.org/10.1007/s00395-011-0200-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0200-1

Keywords

Navigation