Skip to main content

Advertisement

Log in

The Role of Angiogenesis and Arteriogenesis in Myocardial Infarction and Coronary Revascularization

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 11 April 2022

This article has been updated

Abstract

Surgical myocardial revascularization is associated with long-term survival benefit in patients with multivessel coronary artery disease. However, the exact biological mechanisms underlying the clinical benefits of myocardial revascularization have not been elucidated yet. Angiogenesis and arteriogenesis biologically leading to vascular collateralization are considered one of the endogenous mechanisms to preserve myocardial viability during ischemia, and the presence of coronary collateralization has been regarded as one of the predictors of long-term survival in patients with coronary artery disease (CAD). Some experimental studies and indirect clinical evidence on chronic CAD confirmed an angiogenetic response induced by myocardial revascularization and suggested that revascularization procedures could constitute an angiogenetic trigger per se. In this review, the clinical and basic science evidence regarding arteriogenesis and angiogenesis in both CAD and coronary revascularization is analyzed with the aim to better elucidate their significance in the clinical arena and potential therapeutic use.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Gaudino, M., Hameed, I., Farkouh, M. E., Rahouma, M., Naik, A., Robinson, N. B., Ruan, Y., Demetres, M., Biondi-Zoccai, G., Angiolillo, D. J., Bagiella, E., Charlson, M. E., Benedetto, U., Ruel, M., Taggart, D. P., Girardi, L. N., Bhatt, D. L., & Fremes, S. E. (2020). Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions With Coronary Bypass Surgery: A Meta-analysis. JAMA Internal Medicine, 180, 1638–1646. https://doi.org/10.1001/jamainternmed.2020.4748

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doenst, T., Haverich, A., Serruys, P., Bonow, R. O., Kappetein, P., Falk, V., Velazquez, E., Diegeler, A., & Sigusch, H. (2019). PCI and CABG for Treating Stable Coronary Artery Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology, 73, 964–976. https://doi.org/10.1016/j.jacc.2018.11.053

    Article  PubMed  Google Scholar 

  3. Glineur, D., Grau, J. B., Etienne, P. Y., Benedetto, U., Fortier, J. H., Papadatos, S., Laruelle, C., Pieters, D., El Khoury, E., Blouard, P., Timmermans, P., Ruel, M., Chong, A. Y., So, D., Chan, V., Rubens, F., & Gaudino, M. F. (2019). Impact of preoperative fractional flow reserve on arterial bypass graft anastomotic function: The IMPAG trial. European Heart Journal, 40, 2421–2428. https://doi.org/10.1093/eurheartj/ehz329

    Article  PubMed  Google Scholar 

  4. Glineur, D., Rahouma, M., Grau, J. B., Etienne, P. Y., Fortier, J. H., Papadatos, S., Laruelle, C., Pieters, D., El Khoury, E., & Gaudino, M. (2020). FFR Cutoff by Arterial Graft Configuration and Location: IMPAG Trial Insights. JACC. Cardiovascular Interventions, 13, 143–144. https://doi.org/10.1016/j.jcin.2019.08.013

    Article  PubMed  Google Scholar 

  5. Lopes, R. D., Mehta, R. H., Hafley, G. E., Williams, J. B., Mack, M. J., Peterson, E. D., Allen, K. B., Harrington, R. A., Gibson, C. M., Califf, R. M., Kouchoukos, N. T., Ferguson, T. B., Jr., & Alexander, J. H. (2012). Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation, 125, 749–756. https://doi.org/10.1161/circulationaha.111.040311

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gaudino, M., Antoniades, C., Benedetto, U., Deb, S., Di Franco, A., Di Giammarco, G., Fremes, S., Glineur, D., Grau, J., He, G. W., Marinelli, D., Ohmes, L. B., Patrono, C., Puskas, J., Tranbaugh, R., Girardi, L. N., & Taggart, D. P. (2017). Mechanisms, Consequences, and Prevention of Coronary Graft Failure. Circulation, 136, 1749–1764. https://doi.org/10.1161/circulationaha.117.027597

    Article  PubMed  Google Scholar 

  7. Spadaccio, C., Antoniades, C., Nenna, A., Chung, C., Will, R., Chello, M., & Gaudino, M. F. L. (2020). Preventing treatment failures in coronary artery disease: What can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries? Cardiovascular Research, 116, 505–519. https://doi.org/10.1093/cvr/cvz214

    Article  CAS  PubMed  Google Scholar 

  8. Allahwala, U. K., Khachigian, L. M., Nour, D., Ridiandres, A., Billah, M., Ward, M., Weaver, J., & Bhindi, R. (2020). Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvascular Research, 132, 104058. https://doi.org/10.1016/j.mvr.2020.104058

    Article  CAS  PubMed  Google Scholar 

  9. Allahwala, U. K., Kott, K., Bland, A., Ward, M., & Bhindi, R. (2020). Predictors and Prognostic Implications of Well-Matured Coronary Collateral Circulation in Patients with a Chronic Total Occlusion (CTO). International Heart Journal, 61, 223–230. https://doi.org/10.1536/ihj.19-456

    Article  PubMed  Google Scholar 

  10. Merkus, D., Muller-Delp, J., & Heaps, C. L. (2021). Coronary microvascular adaptations distal to epicardial artery stenosis. American Journal of Physiology. Heart and Circulatory Physiology, 320, H2351–H2370. https://doi.org/10.1152/ajpheart.00992.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seiler, C., Stoller, M., Pitt, B., & Meier, P. (2013). The human coronary collateral circulation: Development and clinical importance. European Heart Journal, 34, 2674–2682. https://doi.org/10.1093/eurheartj/eht195

    Article  CAS  PubMed  Google Scholar 

  12. Schaper, W., & Scholz, D. (2003). Factors regulating arteriogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1143–1151. https://doi.org/10.1161/01.atv.0000069625.11230.96

    Article  CAS  PubMed  Google Scholar 

  13. Carmeliet, P., & Jain, R. K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473, 298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herbert, S. P., & Stainier, D. Y. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature Reviews Molecular Cell Biology, 12, 551–564. https://doi.org/10.1038/nrm3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamaiyar, A., Juguilon, C., Wan, W., Richardson, D., Chinchilla, S., Gadd, J., Enrick, M., Wang, T., McCabe, C., Wang, Y., Kolz, C., Clark, A., Thodeti, S., Ohanyan, V., Dong, F., Zhou, B., Chilian, W., & Yin, L. (2022). The essential role for endothelial cell sprouting in coronary collateral growth. Journal of Molecular and Cellular Cardiology, 165, 158–171. https://doi.org/10.1016/j.yjmcc.2022.01.005

    Article  CAS  PubMed  Google Scholar 

  16. Page, D. J., Thuret, R., Venkatraman, L., Takahashi, T., Bentley, K., & Herbert, S. P. (2019). Positive Feedback Defines the Timing, Magnitude, and Robustness of Angiogenesis. Cell Reports, 27, 3139-3151.e3135. https://doi.org/10.1016/j.celrep.2019.05.052

    Article  CAS  PubMed  Google Scholar 

  17. Dragneva, G., Korpisalo, P., & Yla-Herttuala, S. (2013). Promoting blood vessel growth in ischemic diseases: Challenges in translating preclinical potential into clinical success. Disease Models & Mechanisms, 6, 312–322. https://doi.org/10.1242/dmm.010413

    Article  CAS  Google Scholar 

  18. Cao, X., Li, B., Han, X., Zhang, X., Dang, M., Wang, H., Du, F., Zeng, X., & Guo, C. (2020). Soluble receptor for advanced glycation end-products promotes angiogenesis through activation of STAT3 in myocardial ischemia/reperfusion injury. Apoptosis, 25, 341–353. https://doi.org/10.1007/s10495-020-01602-8

    Article  CAS  PubMed  Google Scholar 

  19. Chang H, Li ZB, Wu JY, Zhang L (2020) Circ-100338 induces angiogenesis after myocardial ischemia-reperfusion injury by sponging miR-200a-3p. Eur Rev Med Pharmacol Sci 24:6323–6332. https://doi.org/10.26355/eurrev_202006_21530

  20. Chen, M. H., & Fu, Q. M. (2020). The Roles of AMPK in Revascularization. Cardiology Research and Practice, 2020, 4028635. https://doi.org/10.1155/2020/4028635

    Article  PubMed  PubMed Central  Google Scholar 

  21. Geng, T., Song, Z. Y., Xing, J. X., Wang, B. X., Dai, S. P., & Xu, Z. S. (2020). Exosome Derived from Coronary Serum of Patients with Myocardial Infarction Promotes Angiogenesis Through the miRNA-143/IGF-IR Pathway. International Journal of Nanomedicine, 15, 2647–2658. https://doi.org/10.2147/ijn.s242908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potz, B. A., Parulkar, A. B., Abid, R. M., Sodha, N. R., & Sellke, F. W. (2017). Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coronary Artery Disease, 28, 605–613. https://doi.org/10.1097/mca.0000000000000516

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chávez, J. C., Agani, F., & Pichiule, P. (1985). LaManna JC (2000) Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. Journal of Applied Physiology, 89, 1937–1942. https://doi.org/10.1152/jappl.2000.89.5.1937

    Article  Google Scholar 

  24. Semenza, G. L. (2000). Surviving ischemia: Adaptive responses mediated by hypoxia-inducible factor 1. The Journal of Clinical Investigation, 106, 809–812. https://doi.org/10.1172/jci11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., & Billeter, R. (1985). Hoppeler H (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91, 173–182. https://doi.org/10.1152/jappl.2001.91.1.173

    Article  Google Scholar 

  26. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., & Keshert, E. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490. https://doi.org/10.1038/28867

    Article  CAS  PubMed  Google Scholar 

  27. Gerber, H. P., Condorelli, F., Park, J., & Ferrara, N. (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. Journal of Biological Chemistry, 272, 23659–23667. https://doi.org/10.1074/jbc.272.38.23659

    Article  CAS  PubMed  Google Scholar 

  28. Jung, F., Palmer, L. A., Zhou, N., & Johns, R. A. (2000). Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circulation Research, 86, 319–325. https://doi.org/10.1161/01.res.86.3.319

    Article  CAS  PubMed  Google Scholar 

  29. Palmer, L. A., Semenza, G. L., Stoler, M. H., & Johns, R. A. (1998). Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. American Journal of Physiology, 274, L212-219. https://doi.org/10.1152/ajplung.1998.274.2.L212

    Article  CAS  PubMed  Google Scholar 

  30. Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., Noel, A., Stalmans, I., Barra, A., Blacher, S., VandenDriessche, T., … Persico, M. G. (2001). Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Medicine, 7, 575–583. https://doi.org/10.1038/87904

    Article  CAS  PubMed  Google Scholar 

  31. Khaliq, A., Dunk, C., Jiang, J., Shams, M., Li, X. F., Acevedo, C., Weich, H., Whittle, M., & Ahmed, A. (1999). Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Laboratory Investigation, 79, 151–170.

    CAS  PubMed  Google Scholar 

  32. Loughna, S., & Sato, T. N. (2001). Angiopoietin and Tie signaling pathways in vascular development. Matrix Biology, 20, 319–325. https://doi.org/10.1016/s0945-053x(01)00149-4

    Article  CAS  PubMed  Google Scholar 

  33. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248. https://doi.org/10.1038/35025215

    Article  CAS  PubMed  Google Scholar 

  34. Arras, M., Ito, W. D., Scholz, D., Winkler, B., Schaper, J., & Schaper, W. (1998). Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. The Journal of Clinical Investigation, 101, 40–50. https://doi.org/10.1172/jci119877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395. https://doi.org/10.1038/74651

    Article  CAS  PubMed  Google Scholar 

  36. Guo, M., Shi, J. H., Wang, P. L., & Shi, D. Z. (2018). Angiogenic Growth Factors for Coronary Artery Disease: Current Status and Prospects. Journal of Cardiovascular Pharmacology and Therapeutics, 23, 130–141. https://doi.org/10.1177/1074248417735399

    Article  CAS  PubMed  Google Scholar 

  37. Askin L, Tibilli H, Tanriverdi O, Turkmen S (2020) The relationship between coronary artery disease and SIRT1 protein. North Clin Istanb 7:631–635. https://doi.org/10.14744/nci.2020.31391

  38. Laderoute, K. R., Alarcon, R. M., Brody, M. D., Calaoagan, J. M., Chen, E. Y., Knapp, A. M., Yun, Z., Denko, N. C., & Giaccia, A. J. (2000). Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clinical Cancer Research, 6, 2941–2950.

    CAS  PubMed  Google Scholar 

  39. Wu, P., Yonekura, H., Li, H., Nozaki, I., Tomono, Y., Naito, I., Ninomiya, Y., & Yamamoto, H. (2001). Hypoxia down-regulates endostatin production by human microvascular endothelial cells and pericytes. Biochemical and Biophysical Research Communications, 288, 1149–1154. https://doi.org/10.1006/bbrc.2001.5903

    Article  CAS  PubMed  Google Scholar 

  40. Silvestre, J. S., Smadja, D. M., & Levy, B. I. (2013). Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiological Reviews, 93, 1743–1802. https://doi.org/10.1152/physrev.00006.2013

    Article  CAS  PubMed  Google Scholar 

  41. Pries, A. R., & Secomb, T. W. (2014). Making microvascular networks work: Angiogenesis, remodeling, and pruning. Physiology (Bethesda, Md.), 29, 446–455. https://doi.org/10.1152/physiol.00012.2014

    Article  Google Scholar 

  42. Cochain, C., Rodero, M. P., Vilar, J., Récalde, A., Richart, A. L., Loinard, C., Zouggari, Y., Guérin, C., Duriez, M., Combadière, B., Poupel, L., Lévy, B. I., Mallat, Z., Combadière, C., & Silvestre, J. S. (2010). Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovascular Research, 88, 186–195. https://doi.org/10.1093/cvr/cvq153

    Article  CAS  PubMed  Google Scholar 

  43. Frangogiannis, N. G. (2006). Targeting the inflammatory response in healing myocardial infarcts. Current Medicinal Chemistry, 13, 1877–1893. https://doi.org/10.2174/092986706777585086

    Article  CAS  PubMed  Google Scholar 

  44. Silvestre, J. S., Mallat, Z., Duriez, M., Tamarat, R., Bureau, M. F., Scherman, D., Duverger, N., Branellec, D., Tedgui, A., & Levy, B. I. (2000). Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circulation Research, 87, 448–452. https://doi.org/10.1161/01.res.87.6.448

    Article  CAS  PubMed  Google Scholar 

  45. Silvestre, J. S., Mallat, Z., Tamarat, R., Duriez, M., Tedgui, A., & Levy, B. I. (2001). Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: Role in ischemia-induced angiogenesis. Circulation Research, 89, 259–264. https://doi.org/10.1161/hh1501.094269

    Article  CAS  PubMed  Google Scholar 

  46. Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553. https://doi.org/10.1161/01.RES.0000130526.20854.fa

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi, T., Watanabe, Y., Saito, Y., Fujioka, D., Nakamura, T., Obata, J. E., Kitta, Y., Yano, T., Kawabata, K., Watanabe, K., Mishina, H., Ito, S., & Kugiyama, K. (2010). Mice lacking the glutamate-cysteine ligase modifier subunit are susceptible to myocardial ischaemia-reperfusion injury. Cardiovascular Research, 85, 785–795. https://doi.org/10.1093/cvr/cvp342

    Article  CAS  PubMed  Google Scholar 

  48. Ingason, A. B., Goldstone, A. B., Paulsen, M. J., Thakore, A. D., Truong, V. N., Edwards, B. B., Eskandari, A., Bollig, T., Steele, A. N., & Woo, Y. J. (2018). Angiogenesis precedes cardiomyocyte migration in regenerating mammalian hearts. Journal of Thoracic and Cardiovascular Surgery, 155, 1118-1127.e1111. https://doi.org/10.1016/j.jtcvs.2017.08.127

    Article  CAS  PubMed  Google Scholar 

  49. Schaper, W. (2009). Collateral circulation: Past and present. Basic Research in Cardiology, 104, 5–21. https://doi.org/10.1007/s00395-008-0760-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deindl, E., Buschmann, I., Hoefer, I. E., Podzuweit, T., Boengler, K., Vogel, S., van Royen, N., Fernandez, B., & Schaper, W. (2001). Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circulation Research, 89, 779–786. https://doi.org/10.1161/hh2101.098613

    Article  CAS  PubMed  Google Scholar 

  51. Eitenmüller, I., Volger, O., Kluge, A., Troidl, K., Barancik, M., Cai, W. J., Heil, M., Pipp, F., Fischer, S., Horrevoets, A. J., Schmitz-Rixen, T., & Schaper, W. (2006). The range of adaptation by collateral vessels after femoral artery occlusion. Circulation Research, 99, 656–662. https://doi.org/10.1161/01.RES.0000242560.77512.dd

    Article  CAS  PubMed  Google Scholar 

  52. Pipp, F., Boehm, S., Cai, W. J., Adili, F., Ziegler, B., Karanovic, G., Ritter, R., Balzer, J., Scheler, C., Schaper, W., & Schmitz-Rixen, T. (2004). Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1664–1668. https://doi.org/10.1161/01.ATV.0000138028.14390.e4

    Article  CAS  PubMed  Google Scholar 

  53. Wu, S. H., Zhang, F., Yao, S., Tang, L., Zeng, H. T., Zhu, L. P., & Yang, Z. (2020). Shear Stress Triggers Angiogenesis of Late Endothelial Progenitor Cells via the PTEN/Akt/GTPCH/BH4 Pathway. Stem Cells Int, 2020, 5939530. https://doi.org/10.1155/2020/5939530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gloekler, S., Meier, P., de Marchi, S. F., Rutz, T., Traupe, T., Rimoldi, S. F., Wustmann, K., Steck, H., Cook, S., Vogel, R., Togni, M., & Seiler, C. (2010). Coronary collateral growth by external counterpulsation: A randomised controlled trial. Heart, 96, 202–207. https://doi.org/10.1136/hrt.2009.184507

    Article  CAS  PubMed  Google Scholar 

  55. Grundmann, S., Piek, J. J., Pasterkamp, G., & Hoefer, I. E. (2007). Arteriogenesis: Basic mechanisms and therapeutic stimulation. European Journal of Clinical Investigation, 37, 755–766. https://doi.org/10.1111/j.1365-2362.2007.01861.x

    Article  CAS  PubMed  Google Scholar 

  56. Heil, M., Ziegelhoeffer, T., Pipp, F., Kostin, S., Martin, S., Clauss, M., & Schaper, W. (2002). Blood monocyte concentration is critical for enhancement of collateral artery growth. American Journal of Physiology. Heart and Circulatory Physiology, 283, H2411-2419. https://doi.org/10.1152/ajpheart.01098.2001

    Article  CAS  PubMed  Google Scholar 

  57. Troidl, K., Hammerschick, T., Albarran-Juarez, J., Jung, G., Schierling, W., Tonack, S., Kruger, M., Matuschke, B., Troidl, C., Schaper, W., Schmitz-Rixen, T., Preissner, K. T., & Fischer, S. (2020). Shear Stress-Induced miR-143-3p in Collateral Arteries Contributes to Outward Vessel Growth by Targeting Collagen V-alpha2. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, e126–e137. https://doi.org/10.1161/ATVBAHA.120.313316

    Article  CAS  PubMed  Google Scholar 

  58. Hoefer, I. E., van Royen, N., Buschmann, I. R., Piek, J. J., & Schaper, W. (2001). Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovascular Research, 49, 609–617. https://doi.org/10.1016/s0008-6363(00)00243-1

    Article  CAS  PubMed  Google Scholar 

  59. Revelo, X. S., Parthiban, P., Chen, C., Barrow, F., Fredrickson, G., Wang, H., Yucel, D., Herman, A., & van Berlo, J. H. (2021). Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis. Circulation Research, 129, 1086–1101. https://doi.org/10.1161/CIRCRESAHA.121.319737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vogel, R., Traupe, T., Steiger, V. S., & Seiler, C. (2010). Physical coronary arteriogenesis: A human “model” of collateral growth promotion. Trends in Cardiovascular Medicine, 20, 129–133. https://doi.org/10.1016/j.tcm.2010.10.004

    Article  PubMed  Google Scholar 

  61. Gungor H, Sivri F, Yildirim BO, Cayirli S, Demiroglu O, Yesilkaya CU, Zencir C (2021) The Effects of Preoperative Coronary Collateral Circulation on Cardiac-Related Events after Coronary Artery Bypass Graft Surgery. Braz J Cardiovasc Surg 36:25–31. https://doi.org/10.21470/1678-9741-2019-0375

  62. Chen, S. M., Li, Y. G., Zhang, H. X., Zhang, G. H., Long, J. R., Tan, C. J., Wang, D. M., Fang, X. Y., & Mai, R. Q. (2008). Hypoxia-inducible factor-1alpha induces the coronary collaterals for coronary artery disease. Coronary Artery Disease, 19, 173–179. https://doi.org/10.1097/MCA.0b013e3282fa4b2c

    Article  PubMed  Google Scholar 

  63. Jurgensen, J. S., Rosenberger, C., Wiesener, M. S., Warnecke, C., Horstrup, J. H., Grafe, M., Philipp, S., Griethe, W., Maxwell, P. H., Frei, U., Bachmann, S., Willenbrock, R., & Eckardt, K. U. (2004). Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium. The FASEB Journal, 18, 1415–1417. https://doi.org/10.1096/fj.04-1605fje

    Article  CAS  PubMed  Google Scholar 

  64. Kido, M., Du, L., Sullivan, C. C., Li, X., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2005). Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. Journal of the American College of Cardiology, 46, 2116–2124. https://doi.org/10.1016/j.jacc.2005.08.045

    Article  CAS  PubMed  Google Scholar 

  65. Bao, W., Qin, P., Needle, S., Erickson-Miller, C. L., Duffy, K. J., Ariazi, J. L., Zhao, S., Olzinski, A. R., Behm, D. J., Pipes, G. C., Jucker, B. M., Hu, E., Lepore, J. J., & Willette, R. N. (2010). Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. Journal of Cardiovascular Pharmacology, 56, 147–155. https://doi.org/10.1097/FJC.0b013e3181e2bfef

    Article  CAS  PubMed  Google Scholar 

  66. Huang, M., Nguyen, P., Jia, F., Hu, S., Gong, Y., de Almeida, P. E., Wang, L., Nag, D., Kay, M. A., Giaccia, A. J., Robbins, R. C., & Wu, J. C. (2011). Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation, 124, S46-54. https://doi.org/10.1161/CIRCULATIONAHA.110.014019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Badimon, L., & Borrell, M. (2018). Microvasculature Recovery by Angiogenesis After Myocardial Infarction. Current Pharmaceutical Design, 24, 2967–2973. https://doi.org/10.2174/1381612824666180629162726

    Article  CAS  PubMed  Google Scholar 

  68. Skuli, N., Majmundar, A. J., Krock, B. L., Mesquita, R. C., Mathew, L. K., Quinn, Z. L., Runge, A., Liu, L., Kim, M. N., Liang, J., Schenkel, S., Yodh, A. G., Keith, B., & Simon, M. C. (2012). Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes. The Journal of Clinical Investigation, 122, 1427–1443. https://doi.org/10.1172/jci57322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Red-Horse, K., & Das, S. (2021). New Research Is Shining Light on How Collateral Arteries Form in the Heart: A Future Therapeutic Direction? Current Cardiology Reports, 23, 30. https://doi.org/10.1007/s11886-021-01460-z

    Article  PubMed  Google Scholar 

  70. Spadaccio, C., Nappi, F., Nenna, A., Beattie, G., Chello, M., & Sutherland, F. W. (2016). Is it time to change how we think about incomplete coronary revascularization? International Journal of Cardiology, 224, 295–298. https://doi.org/10.1016/j.ijcard.2016.09.055

    Article  PubMed  Google Scholar 

  71. Piccirillo, F., Carpenito, M., Verolino, G., Chello, C., Nusca, A., Lusini, M., Spadaccio, C., Nappi, F., Di Sciascio, G., & Nenna, A. (2019). Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mechanisms of Ageing and Development, 184, 111161. https://doi.org/10.1016/j.mad.2019.111161

    Article  CAS  PubMed  Google Scholar 

  72. Ebrahimian, T. G., Heymes, C., You, D., Blanc-Brude, O., Mees, B., Waeckel, L., Duriez, M., Vilar, J., Brandes, R. P., Levy, B. I., Shah, A. M., & Silvestre, J. S. (2006). NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. American Journal of Pathology, 169, 719–728. https://doi.org/10.2353/ajpath.2006.060042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haddad, P., Dussault, S., Groleau, J., Turgeon, J., Maingrette, F., & Rivard, A. (2011). Nox2-derived reactive oxygen species contribute to hypercholesterolemia-induced inhibition of neovascularization: Effects on endothelial progenitor cells and mature endothelial cells. Atherosclerosis, 217, 340–349. https://doi.org/10.1016/j.atherosclerosis.2011.03.038

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida, T., Maulik, N., Engelman, R. M., Ho, Y. S., & Das, D. K. (2000). Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circulation Research, 86, 264–269. https://doi.org/10.1161/01.res.86.3.264

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X., Sun, X., Liao, H., Dong, Z., Zhao, J., Zhu, H., Wang, P., Shen, L., Xu, L., Ma, X., Shen, C., Fan, F., Wang, C., Hu, K., Zou, Y., Ge, J., Ren, J., & Sun, A. (2015). Mitochondrial Aldehyde Dehydrogenase 2 Regulates Revascularization in Chronic Ischemia: Potential Impact on the Development of Coronary Collateral Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 2196–2206. https://doi.org/10.1161/atvbaha.115.306012

    Article  CAS  PubMed  Google Scholar 

  76. Davidson, S. M., Padro, T., Bollini, S., Vilahur, G., Duncker, D. J., Evans, P. C., Guzik, T., Hoefer, I. E., Waltenberger, J., Wojta, J., & Weber, C. (2021). Progress in cardiac research: From rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovascular Research, 117, 2161–2174. https://doi.org/10.1093/cvr/cvab200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J., Toan, S., & Zhou, H. (2020). New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis, 23, 299–314. https://doi.org/10.1007/s10456-020-09720-2

    Article  CAS  PubMed  Google Scholar 

  78. Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: The renaissance cell. Circulation Research, 105, 1164–1176. https://doi.org/10.1161/circresaha.109.209809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fukuyama, N., Tanaka, E., Tabata, Y., Fujikura, H., Hagihara, M., Sakamoto, H., Ando, K., Nakazawa, H., & Mori, H. (2007). Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/reperfusion injury model. Basic Research in Cardiology, 102, 209–216. https://doi.org/10.1007/s00395-006-0629-9

    Article  CAS  PubMed  Google Scholar 

  80. Giordano, F. J., Ping, P., McKirnan, M. D., Nozaki, S., DeMaria, A. N., Dillmann, W. H., Mathieu-Costello, O., & Hammond, H. K. (1996). Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Medicine, 2, 534–539. https://doi.org/10.1038/nm0596-534

    Article  CAS  PubMed  Google Scholar 

  81. Wu, Z., & Zhu, D. (2014). The important role of catestatin in cardiac remodeling. Biomarkers, 19, 625–630. https://doi.org/10.3109/1354750x.2014.950331

    Article  CAS  PubMed  Google Scholar 

  82. Xu, W., Yu, H., Wu, H., Li, S., Chen, B., & Gao, W. (2017). Plasma Catestatin in Patients with Acute Coronary Syndrome. Cardiology, 136, 164–169. https://doi.org/10.1159/000448987

    Article  CAS  PubMed  Google Scholar 

  83. Salvucci, O., & Tosato, G. (2012). Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Advances in Cancer Research, 114, 21–57. https://doi.org/10.1016/b978-0-12-386503-8.00002-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, D., Jin, C., Ma, H., Huang, M., Shi, G. P., Wang, J., & Xiang, M. (2016). EphrinB2/EphB4 pathway in postnatal angiogenesis: A potential therapeutic target for ischemic cardiovascular disease. Angiogenesis, 19, 297–309. https://doi.org/10.1007/s10456-016-9514-9

    Article  CAS  PubMed  Google Scholar 

  85. McIntosh, V. J., & Lasley, R. D. (2012). Adenosine receptor-mediated cardioprotection: Are all 4 subtypes required or redundant? Journal of Cardiovascular Pharmacology and Therapeutics, 17, 21–33. https://doi.org/10.1177/1074248410396877

    Article  CAS  PubMed  Google Scholar 

  86. Auchampach, J. A. (2007). Adenosine receptors and angiogenesis. Circulation Research, 101, 1075–1077. https://doi.org/10.1161/circresaha.107.165761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ernens, I., Bousquenaud, M., Lenoir, B., Devaux, Y., & Wagner, D. R. (2015). Adenosine stimulates angiogenesis by up-regulating production of thrombospondin-1 by macrophages. Journal of Leukocyte Biology, 97, 9–18. https://doi.org/10.1189/jlb.3HI0514-249RR

    Article  CAS  PubMed  Google Scholar 

  88. Dehkordi, N. R., Dehkordi, N. R., & Farjoo, M. H. (2022). Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. European Journal of Pharmacology, 920, 174839. https://doi.org/10.1016/j.ejphar.2022.174839

    Article  CAS  PubMed  Google Scholar 

  89. Meng, H., Cheng, W., Wang, L., Chen, S., Teng, Y., Lu, Z., Li, Y., & Zhao, M. (2021). Mesenchymal Stem Cell Exosomes in the Treatment of Myocardial Infarction: A Systematic Review of Preclinical In Vivo Studies. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-021-10168-y

    Article  PubMed  Google Scholar 

  90. Zhang, J., Cui, X., Guo, J., Cao, C., Zhang, Z., Wang, B., Zhang, L., Shen, D., Lim, K., Woodfield, T., Tang, J., & Zhang, J. (2020). Small but significant: Insights and new perspectives of exosomes in cardiovascular disease. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/jcmm.15492

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yu, X., Deng, L., Wang, D., Li, N., Chen, X., Cheng, X., Yuan, J., Gao, X., Liao, M., Wang, M., & Liao, Y. (2012). Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes. Journal of Molecular and Cellular Cardiology, 53, 848–857. https://doi.org/10.1016/j.yjmcc.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  92. Auffray, C., Fogg, D. K., Narni-Mancinelli, E., Senechal, B., Trouillet, C., Saederup, N., Leemput, J., Bigot, K., Campisi, L., Abitbol, M., Molina, T., Charo, I., Hume, D. A., Cumano, A., Lauvau, G., & Geissmann, F. (2009). CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. Journal of Experimental Medicine, 206, 595–606. https://doi.org/10.1084/jem.20081385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cheng, W. P., Hung, H. F., Wang, B. W., & Shyu, K. G. (2008). The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovascular Research, 77, 551–559. https://doi.org/10.1093/cvr/cvm057

    Article  CAS  PubMed  Google Scholar 

  94. Ma, Y., Mouton, A. J., & Lindsey, M. L. (2018). Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Translational Research, 191, 15–28. https://doi.org/10.1016/j.trsl.2017.10.001

    Article  PubMed  Google Scholar 

  95. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555. https://doi.org/10.1016/s1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  96. Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S. W., & Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116, 829–840. https://doi.org/10.1182/blood-2009-12-257832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Preston, G. A., Zarella, C. S., Pendergraft, W. F., 3rd., Rudolph, E. H., Yang, J. J., Sekura, S. B., Jennette, J. C., & Falk, R. J. (2002). Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-kappaB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. Journal of the American Society of Nephrology, 13, 2840–2849. https://doi.org/10.1097/01.asn.0000034911.03334.c3

    Article  CAS  PubMed  Google Scholar 

  98. Silvestre, J. S., Mallat, Z., Tedgui, A., & Lévy, B. I. (2008). Post-ischaemic neovascularization and inflammation. Cardiovascular Research, 78, 242–249. https://doi.org/10.1093/cvr/cvn027

    Article  CAS  PubMed  Google Scholar 

  99. Hata, T., Takahashi, M., Hida, S., Kawaguchi, M., Kashima, Y., Usui, F., Morimoto, H., Nishiyama, A., Izawa, A., Koyama, J., Iwakura, Y., Taki, S., & Ikeda, U. (2011). Critical role of Th17 cells in inflammation and neovascularization after ischaemia. Cardiovascular Research, 90, 364–372. https://doi.org/10.1093/cvr/cvq397

    Article  CAS  PubMed  Google Scholar 

  100. Hellingman, A. A., Zwaginga, J. J., van Beem, R. T., Hamming, J. F., Fibbe, W. E., Quax, P. H., & Geutskens, S. B. (2011). T-cell-pre-stimulated monocytes promote neovascularisation in a murine hind limb ischaemia model. European Journal of Vascular and Endovascular Surgery, 41, 418–428. https://doi.org/10.1016/j.ejvs.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  101. Hur, J., Yang, H. M., Yoon, C. H., Lee, C. S., Park, K. W., Kim, J. H., Kim, T. Y., Kim, J. Y., Kang, H. J., Chae, I. H., Oh, B. H., Park, Y. B., & Kim, H. S. (2007). Identification of a novel role of T cells in postnatal vasculogenesis: Characterization of endothelial progenitor cell colonies. Circulation, 116, 1671–1682. https://doi.org/10.1161/circulationaha.107.694778

    Article  PubMed  Google Scholar 

  102. van Weel, V., Toes, R. E., Seghers, L., Deckers, M. M., de Vries, M. R., Eilers, P. H., Sipkens, J., Schepers, A., Eefting, D., van Hinsbergh, V. W., van Bockel, J. H., & Quax, P. H. (2007). Natural killer cells and CD4+ T-cells modulate collateral artery development. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2310–2318. https://doi.org/10.1161/atvbaha.107.151407

    Article  PubMed  Google Scholar 

  103. Bouchentouf, M., Forner, K. A., Cuerquis, J., Michaud, V., Zheng, J., Paradis, P., Schiffrin, E. L., & Galipeau, J. (2010). Induction of cardiac angiogenesis requires killer cell lectin-like receptor 1 and α4β7 integrin expression by NK cells. The Journal of Immunology, 185, 7014–7025. https://doi.org/10.4049/jimmunol.1001888

    Article  CAS  PubMed  Google Scholar 

  104. Zouggari, Y., Ait-Oufella, H., Waeckel, L., Vilar, J., Loinard, C., Cochain, C., Récalde, A., Duriez, M., Levy, B. I., Lutgens, E., Mallat, Z., & Silvestre, J. S. (2009). Regulatory T cells modulate postischemic neovascularization. Circulation, 120, 1415–1425. https://doi.org/10.1161/circulationaha.109.875583

    Article  PubMed  Google Scholar 

  105. Hellingman, A. A., van der Vlugt, L. E., Lijkwan, M. A., Bastiaansen, A. J., Sparwasser, T., Smits, H. H., Hamming, J. F., & Quax, P. H. (2012). A limited role for regulatory T cells in post-ischemic neovascularization. Journal of Cellular and Molecular Medicine, 16, 328–336. https://doi.org/10.1111/j.1582-4934.2011.01300.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Feoktistov, I., Ryzhov, S., Goldstein, A. E., & Biaggioni, I. (2003). Mast cell-mediated stimulation of angiogenesis: Cooperative interaction between A2B and A3 adenosine receptors. Circulation Research, 92, 485–492. https://doi.org/10.1161/01.res.0000061572.10929.2d

    Article  CAS  PubMed  Google Scholar 

  107. Somasundaram, P., Ren, G., Nagar, H., Kraemer, D., Mendoza, L., Michael, L. H., Caughey, G. H., Entman, M. L., & Frangogiannis, N. G. (2005). Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. The Journal of Pathology, 205, 102–111. https://doi.org/10.1002/path.1690

    Article  CAS  PubMed  Google Scholar 

  108. Prasad, M., Corban, M. T., Henry, T. D., Dietz, A. B., Lerman, L. O., & Lerman, A. (2020). Promise of Autologous CD34+ Stem/Progenitor Cell Therapy for Treatment of Cardiovascular Disease. Cardiovascular Research. https://doi.org/10.1093/cvr/cvaa027

    Article  PubMed  Google Scholar 

  109. Aikawa, T., Naya, M., Koyanagawa, K., Manabe, O., Obara, M., Magota, K., Oyama-Manabe, N., Tamaki, N., & Anzai, T. (2020). Improved regional myocardial blood flow and flow reserve after coronary revascularization as assessed by serial 15O-water positron emission tomography/computed tomography. European Heart Journal Cardiovascular Imaging, 21, 36–46. https://doi.org/10.1093/ehjci/jez220

    Article  PubMed  Google Scholar 

  110. Maaniitty, T., Jaakkola, S., Saraste, A., & Knuuti, J. (2019). Hybrid coronary computed tomography angiography and positron emission tomography myocardial perfusion imaging in evaluation of recurrent symptoms after coronary artery bypass grafting. European Heart Journal Cardiovascular Imaging, 20, 1298–1304. https://doi.org/10.1093/ehjci/jey160

    Article  PubMed  Google Scholar 

  111. Balogh, V., MacAskill, M. G., Hadoke, P. W. F., Gray, G. A., & Tavares, A. A. S. (2021). Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med, 8, 719031. https://doi.org/10.3389/fcvm.2021.719031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jenkins, W. S., Vesey, A. T., Stirrat, C., Connell, M., Lucatelli, C., Neale, A., Moles, C., Vickers, A., Fletcher, A., Pawade, T., Wilson, I., Rudd, J. H., van Beek, E. J., Mirsadraee, S., Dweck, M. R., & Newby, D. E. (2017). Cardiac alphaVbeta3 integrin expression following acute myocardial infarction in humans. Heart, 103, 607–615. https://doi.org/10.1136/heartjnl-2016-310115

    Article  CAS  PubMed  Google Scholar 

  113. Ferguson, T. B., Jr. (2016). Physiology of in-situ arterial revascularization in coronary artery bypass grafting: Preoperative, intraoperative and postoperative factors and influences. World Journal of Cardiology, 8, 623–637. https://doi.org/10.4330/wjc.v8.i11.623

    Article  PubMed  Google Scholar 

  114. Ferguson, T. B., Jr., Chen, C., Babb, J. D., Efird, J. T., Daggubati, R., & Cahill, J. M. (2013). Fractional flow reserve-guided coronary artery bypass grafting: Can intraoperative physiologic imaging guide decision making? Journal of Thoracic and Cardiovascular Surgery, 146, 824-835.e821. https://doi.org/10.1016/j.jtcvs.2013.06.026

    Article  PubMed  Google Scholar 

  115. Ferguson, T. B., Jr., Chen, C., & Buch, A. N. (2013). Fractional flow reserve-guided coronary bypass surgery: Should surgeons use it? Current Opinion in Cardiology, 28, 654–660. https://doi.org/10.1097/HCO.0b013e32836581a3

    Article  PubMed  Google Scholar 

  116. Shimizu, T., Ito, S., Kikuchi, Y., Misaka, M., Hirayama, T., Ishimaru, S., & Yamashina, A. (2004). Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: A comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery, 25, 578–584. https://doi.org/10.1016/j.ejcts.2003.12.039

    Article  PubMed  Google Scholar 

  117. Davies, P. F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature Clinical Practice. Cardiovascular Medicine, 6, 16–26. https://doi.org/10.1038/ncpcardio1397

    Article  CAS  PubMed  Google Scholar 

  118. Gutterman, D. D., Chabowski, D. S., Kadlec, A. O., Durand, M. J., Freed, J. K., Ait-Aissa, K., & Beyer, A. M. (2016). The Human Microcirculation: Regulation of Flow and Beyond. Circulation Research, 118, 157–172. https://doi.org/10.1161/circresaha.115.305364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Akasaka, T., Yoshikawa, J., Yoshida, K., Maeda, K., Hozumi, T., Nasu, M., & Shomura, T. (1995). Flow capacity of internal mammary artery grafts: Early restriction and later improvement assessed by Doppler guide wire. Comparison with saphenous vein grafts. Journal of the American College of Cardiology, 25, 640–647. https://doi.org/10.1016/0735-1097(94)00448-y

    Article  CAS  PubMed  Google Scholar 

  120. Hartman, J., Kelder, H., Ackerstaff, R., van Swieten, H., Vermeulen, F., & Bogers, A. (2007). Preserved hyperaemic response in (distal) string sign left internal mammary artery grafts. European Journal of Cardio-Thoracic Surgery, 31, 283–289. https://doi.org/10.1016/j.ejcts.2006.11.016

    Article  PubMed  Google Scholar 

  121. Spadaccio, C., Nappi, F., Al-Attar, N., Coccia, R., Perluigi, M., & Di Domenico, F. (2016). CURRENT DEVELOPMENTS IN DRUG ELUTING DEVICES: Introductory Editorial: Drug-Eluting Stents or Drug-Eluting Grafts? Insights from Proteomic Analysis. Drug Target Insights, 10, 15–19. https://doi.org/10.4137/DTI.S41240

    Article  PubMed  Google Scholar 

  122. Wang, Y., Gabrielsen, A., Lawler, P. R., Paulsson-Berne, G., Steinbrüchel, D. A., Hansson, G. K., & Kastrup, J. (2006). Myocardial gene expression of angiogenic factors in human chronic ischemic myocardium: Influence of acute ischemia/cardioplegia and reperfusion. Microcirculation, 13, 187–197. https://doi.org/10.1080/10739680600556811

    Article  CAS  PubMed  Google Scholar 

  123. Ramos, C., Napoleao, P., Selas, M., Freixo, C., Viegas Crespo, A. M., Mota Carmo, M., Cruz Ferreira, R., & Pinheiro, T. (2014). Prognostic value of VEGF in patients submitted to percutaneous coronary intervention. Disease Markers, 2014, 135357. https://doi.org/10.1155/2014/135357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cotton, J. M., Mathur, A., Hong, Y., Brown, A. S., Martin, J. F., & Erusalimsky, J. D. (2002). Acute rise of circulating vascular endothelial growth factor-A in patients with coronary artery disease following cardiothoracic surgery. European Heart Journal, 23, 953–959. https://doi.org/10.1053/euhj.2001.3034

    Article  CAS  PubMed  Google Scholar 

  125. Han X, Liu L, Niu J, Yang J, Zhang Z, Zhang Z (2015) Serum VEGF Predicts Worse Clinical Outcome of Patients with Coronary Heart Disease After Percutaneous Coronary Intervention Therapy. Med Sci Monit 21:3247–3251. https://doi.org/10.12659/msm.894803

  126. Denizot, Y., Leguyader, A., Cornu, E., Laskar, M., Orsel, I., Vincent, C., & Nathan, N. (2008). Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: Relationships with post-operative complications. Journal of Cardiothoracic Surgery, 3, 16. https://doi.org/10.1186/1749-8090-3-16

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dai, R., Liu, Y., Zhou, Y., Xiong, X., Zhou, W., Li, W., Zhou, W., & Chen, M. (2020). Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. Journal of Clinical Laboratory Analysis, 34, e23013. https://doi.org/10.1002/jcla.23013

    Article  PubMed  Google Scholar 

  128. Tarr, F. I., Sasvari, M., Tarr, M., & Racz, R. (2005). Evidence of nitric oxide produced by the internal mammary artery graft in venous drainage of the recipient coronary artery. Annals of Thoracic Surgery, 80, 1728–1731. https://doi.org/10.1016/j.athoracsur.2005.05.005

    Article  PubMed  Google Scholar 

  129. Tarr, F., Dudas, G., Tarr, M., Racz, R., Sasvari, M., & Tomcsanyi, I. (2002). Analysis of the stable metabolite of endothelium-derived nitric oxide of internal mammary artery bypass grafts at the venous drainage system of the recipient coronary artery. Morphologic implications and consequences. Orvosi Hetilap, 143, 2549–2552.

    PubMed  Google Scholar 

  130. Liu ZG, Ge ZD, He GW (2000) Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein. Circulation 102:Iii296–301. https://doi.org/10.1161/01.cir.102.suppl_3.iii-296

  131. Fonseca, D. A., Antunes, P. E., Antunes, M. J., & Cotrim, M. D. (2019). Histomorphometric analysis of the human internal thoracic artery and relationship with cardiovascular risk factors. PLoS ONE, 14, e0211421. https://doi.org/10.1371/journal.pone.0211421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. MJ Nawrocki B Perek P Sujka-Kordowska A Konwerska S Kaluzna P Zawierucha M Bruska M Zabel M Jemielity M Nowicki B Kempisty A Malinska 2019 Differences in Expression of Genes Involved in Bone Development and Morphogenesis in the Walls of Internal Thoracic Artery and Saphenous Vein Conduits May Provide Markers Useful for Evaluation Graft Patency International Journal of Molecular Sciences 20. https://doi.org/10.3390/ijms20194890

  133. Veres, G., Schmidt, H., Hegedus, P., Korkmaz-Icoz, S., Radovits, T., Loganathan, S., Brlecic, P., Li, S., Karck, M., & Szabo, G. (2018). Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. Journal of Thoracic and Cardiovascular Surgery, 156, 1460–1469. https://doi.org/10.1016/j.jtcvs.2018.05.079

    Article  PubMed  Google Scholar 

  134. Podemska-Jedrzejczak, Z., Malinska, A., Sujka-Kordowska, P., Nowicki, M., Puslecki, M., Jemielity, M., & Perek, B. (2018). Vascular restenosis in coronary artery bypass grafting might be associated with VEGF-C/VEGFR-3 signaling pathway. Heart and Vessels, 33, 1106–1120. https://doi.org/10.1007/s00380-018-1158-9

    Article  PubMed  Google Scholar 

  135. Alattar, M., Jiang, C., Luan, Z., Pan, T., Liu, L., & Li, J. (2014). Neuropilin 1 expression in human aortas, coronaries and the main bypass grafts. European Journal of Cardio-Thoracic Surgery, 46, 967–973. https://doi.org/10.1093/ejcts/ezu118

    Article  PubMed  Google Scholar 

  136. de la Cuesta, F., Alvarez-Llamas, G., Maroto, A. S., Donado, A., Zubiri, I., Posada, M., Padial, L. R., Pinto, A. G., Barderas, M. G., & Vivanco, F. (2011). A proteomic focus on the alterations occurring at the human atherosclerotic coronary intima. Molecular and Cellular Proteomics, 10(M110), 003517. https://doi.org/10.1074/mcp.M110.003517

    Article  CAS  PubMed  Google Scholar 

  137. Lyck Hansen, M., Beck, H. C., Irmukhamedov, A., Jensen, P. S., Olsen, M. H., & Rasmussen, L. M. (2015). Proteome analysis of human arterial tissue discloses associations between the vascular content of small leucine-rich repeat proteoglycans and pulse wave velocity. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 1896–1903. https://doi.org/10.1161/ATVBAHA.114.304706

    Article  CAS  PubMed  Google Scholar 

  138. Numaguchi, R., Furuhashi, M., Matsumoto, M., Sato, H., Yanase, Y., Kuroda, Y., Harada, R., Ito, T., Higashiura, Y., Koyama, M., Tanaka, M., Moniwa, N., Nakamura, M., Doi, H., Miura, T., & Kawaharada, N. (2019). Differential Phenotypes in Perivascular Adipose Tissue Surrounding the Internal Thoracic Artery and Diseased Coronary Artery. Journal of the American Heart Association, 8, e011147. https://doi.org/10.1161/JAHA.118.011147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Loukas, M., Hanna, M., Chen, J., Tubbs, R. S., & Anderson, R. H. (2011). Extracardiac coronary arterial anastomoses. Clinical Anatomy, 24, 137–142. https://doi.org/10.1002/ca.21088

    Article  PubMed  Google Scholar 

  140. MR Bigler C Seiler 2019 The Human Coronary Collateral Circulation, Its Extracardiac Anastomoses and Their Therapeutic Promotion International Journal of Molecular Sciences 20. https://doi.org/10.3390/ijms20153726

  141. Piciche, M., & Versaci, F. (2020). Neoangiogenesis connecting a left internal mammary artery proximal stump to an ischemic area of the heart after bypass occlusion. Journal of Cardiac Surgery, 35, 464–466. https://doi.org/10.1111/jocs.14353

    Article  PubMed  Google Scholar 

  142. Redd, M. A., Zeinstra, N., Qin, W., Wei, W., Martinson, A., Wang, Y., Wang, R. K., Murry, C. E., & Zheng, Y. (2019). Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nature Communications, 10, 584. https://doi.org/10.1038/s41467-019-08388-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cobb, L. A., Thomas, G. I., Dillard, D. H., Merendino, K. A., & Bruce, R. A. (1959). An evaluation of internal-mammary-artery ligation by a double-blind technic. New England Journal of Medicine, 260, 1115–1118. https://doi.org/10.1056/NEJM195905282602204

    Article  CAS  PubMed  Google Scholar 

  144. Kitchell, J. R., Glover, R. P., & Kyle, R. H. (1958). Bilateral internal mammary artery ligation for angina pectoris. The American Journal of Cardiology, 1, 46–50. https://doi.org/10.1016/0002-9149(58)90074-2

    Article  CAS  PubMed  Google Scholar 

  145. Stoller, M., de Marchi, S. F., & Seiler, C. (2014). Function of natural internal mammary-to-coronary artery bypasses and its effect on myocardial ischemia. Circulation, 129, 2645–2652. https://doi.org/10.1161/CIRCULATIONAHA.114.008898

    Article  PubMed  Google Scholar 

  146. M Stoller C Seiler 2017 Effect of Permanent Right Internal Mammary Artery Closure on Coronary Collateral Function and Myocardial Ischemia Circulation. Cardiovascular Interventions 10. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004990

  147. Tatoulis, J., Buxton, B. F., & Fuller, J. A. (2004). Patencies of 2127 arterial to coronary conduits over 15 years. Annals of Thoracic Surgery, 77, 93–101. https://doi.org/10.1016/s0003-4975(03)01331-6

    Article  PubMed  Google Scholar 

  148. Li, G., Zhang, Y., Wu, Z., Liu, Z., & Zheng, J. (2019). Mid-term and long-term outcomes of endoscopic versus open vein harvesting for coronary artery bypass: A systematic review and meta-analysis. International Journal of Surgery, 72, 167–173. https://doi.org/10.1016/j.ijsu.2019.11.003

    Article  PubMed  Google Scholar 

  149. Gaba, P., Gersh, B. J., Ali, Z. A., Moses, J. W., & Stone, G. W. (2021). Complete versus incomplete coronary revascularization: Definitions, assessment and outcomes. Nature Reviews. Cardiology, 18, 155–168. https://doi.org/10.1038/s41569-020-00457-5

    Article  PubMed  Google Scholar 

  150. Benedetto, U., Gaudino, M., Di Franco, A., Caputo, M., Ohmes, L. B., Grau, J., Glineur, D., Girardi, L. N., & Angelini, G. D. (2018). Incomplete revascularization and long-term survival after coronary artery bypass surgery. International Journal of Cardiology, 254, 59–63. https://doi.org/10.1016/j.ijcard.2017.08.005

    Article  PubMed  Google Scholar 

  151. Hattler B, Grover FL, Wagner T, Hawkins RB, Quin JA, Collins JF, Bishawi M, Almassi H, Shroyer AL, Veterans Affairs Randomized On/Off Bypass Follow-up Study G. (2020). Incidence and Prognostic Impact of Incomplete Revascularization Documented by Coronary Angiography 1 Year After Coronary Artery Bypass Grafting. American Journal of Cardiology, 131, 7–11. https://doi.org/10.1016/j.amjcard.2020.06.047

    Article  Google Scholar 

  152. Schaefer, A., Conradi, L., Schneeberger, Y., Reichenspurner, H., Sandner, S., Tebbe, U., Nowak, B., Stritzke, J., Kastrati, A., Schunkert, H., von Scheidt, M., & Ti CABi,. (2020). Clinical outcomes of complete versus incomplete revascularization in patients treated with coronary artery bypass grafting: Insights from the TiCAB trial. European Journal of Cardio-Thoracic Surgery. https://doi.org/10.1093/ejcts/ezaa330

    Article  PubMed  Google Scholar 

  153. Milojevic, M., Head, S. J., Parasca, C. A., Serruys, P. W., Mohr, F. W., Morice, M. C., Mack, M. J., Stahle, E., Feldman, T. E., Dawkins, K. D., Colombo, A., Kappetein, A. P., & Holmes, D. R., Jr. (2016). Causes of Death Following PCI Versus CABG in Complex CAD: 5-Year Follow-Up of SYNTAX. Journal of the American College of Cardiology, 67, 42–55. https://doi.org/10.1016/j.jacc.2015.10.043

    Article  PubMed  Google Scholar 

  154. Takahashi, K., Serruys, P. W., Gao, C., Ono, M., Wang, R., Thuijs, D., Mack, M. J., Curzen, N., Mohr, F. W., Davierwala, P., Milojevic, M., Wykrzykowska, J. J., de Winter, R. J., Sharif, F., Onuma, Y., Head, S. J., Kappetein, A. P., Morice, M. C., Holmes, D. R., Jr., & Investigators, S. E. S. S. (2021). Ten-Year All-Cause Death According to Completeness of Revascularization in Patients With Three-Vessel Disease or Left Main Coronary Artery Disease: Insights From the SYNTAX Extended Survival Study. Circulation, 144, 96–109. https://doi.org/10.1161/CIRCULATIONAHA.120.046289

    Article  CAS  PubMed  Google Scholar 

  155. Bangalore, S., Guo, Y., Samadashvili, Z., & Hannan, E. L. (2020). Outcomes With Complete Versus Incomplete Revascularization in Patients With Multivessel Coronary Disease Undergoing Percutaneous Coronary Intervention With Everolimus Eluting Stents. American Journal of Cardiology, 125, 362–369. https://doi.org/10.1016/j.amjcard.2019.10.022

    Article  CAS  PubMed  Google Scholar 

  156. Kim, Y. H., Her, A. Y., Jeong, M. H., Kim, B. K., Hong, S. J., Kim, S., Ahn, C. M., Kim, J. S., Ko, Y. G., Choi, D., Hong, M. K., & Jang, Y. (2020). Culprit-only versus multivessel or complete versus incomplete revascularization in patients with non-ST-segment elevation myocardial infarction and multivessel disease who underwent successful percutaneous coronary intervention using newer-generation drug-eluting stents. Atherosclerosis, 301, 54–64. https://doi.org/10.1016/j.atherosclerosis.2020.04.002

    Article  CAS  PubMed  Google Scholar 

  157. Head, S. J., Mack, M. J., Holmes, D. R., Jr., Mohr, F. W., Morice, M. C., Serruys, P. W., & Kappetein, A. P. (2012). Incidence, predictors and outcomes of incomplete revascularization after percutaneous coronary intervention and coronary artery bypass grafting: A subgroup analysis of 3-year SYNTAX data. European Journal of Cardio-Thoracic Surgery, 41, 535–541. https://doi.org/10.1093/ejcts/ezr105

    Article  PubMed  Google Scholar 

  158. Spadaccio C, Nenna A, Nappi F, Barbato R, Greco SM, Nusca A, Sommariva L, Chello M (2018) Single-territory incomplete surgical revascularization improves regional wall motion of remote ventricular areas: results from a propensity-matched study. J Geriatr Cardiol 15:479–485. https://doi.org/10.11909/j.issn.1671-5411.2018.07.003

  159. Head, S. J., Milojevic, M., Daemen, J., Ahn, J. M., Boersma, E., Christiansen, E. H., Domanski, M. J., Farkouh, M. E., Flather, M., Fuster, V., Hlatky, M. A., Holm, N. R., Hueb, W. A., Kamalesh, M., Kim, Y. H., Makikallio, T., Mohr, F. W., Papageorgiou, G., Park, S. J., … Kappetein, A. P. (2018). Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: A pooled analysis of individual patient data. Lancet, 391, 939–948. https://doi.org/10.1016/s0140-6736(18)30423-9

    Article  PubMed  Google Scholar 

  160. Watanabe, N., Yonekura, S., Williams, A. G., Jr., Scheel, K. W., & Downey, H. F. (1989). Regression and recovery of well-developed coronary collateral function in canine hearts after aorta-coronary bypass. Journal of Thoracic and Cardiovascular Surgery, 97, 286–296.

    Article  CAS  PubMed  Google Scholar 

  161. Zimarino, M., Ausiello, A., Contegiacomo, G., Riccardi, I., Renda, G., Di Iorio, C., & De Caterina, R. (2006). Rapid decline of collateral circulation increases susceptibility to myocardial ischemia: The trade-off of successful percutaneous recanalization of chronic total occlusions. Journal of the American College of Cardiology, 48, 59–65. https://doi.org/10.1016/j.jacc.2005.12.079

    Article  PubMed  Google Scholar 

  162. Pereg, D., Fefer, P., Samuel, M., Wolff, R., Czarnecki, A., Deb, S., Sparkes, J. D., Fremes, S. E., & Strauss, B. H. (2014). Native coronary artery patency after coronary artery bypass surgery. JACC. Cardiovascular Interventions, 7, 761–767. https://doi.org/10.1016/j.jcin.2014.01.164

    Article  PubMed  Google Scholar 

  163. Caputo, M., Anis, R. R., Rogers, C. A., Ahmad, N., Rizvi, S. I., Baumbach, A., Karsch, K. R., Angelini, G. D., & Oberhoff, M. (2008). Coronary collateral circulation: Effect on early and midterm outcomes after off-pump coronary artery bypass surgery. Annals of Thoracic Surgery, 85, 71–79. https://doi.org/10.1016/j.athoracsur.2007.08.026

    Article  PubMed  Google Scholar 

  164. Nathoe, H. M., Buskens, E., Jansen, E. W., Suyker, W. J., Stella, P. R., Lahpor, J. R., van Boven, W. J., van Dijk, D., Diephuis, J. C., Borst, C., Moons, K. G., Grobbee, D. E., & de Jaegere, P. P. (2004). Role of coronary collaterals in off-pump and on-pump coronary bypass surgery. Circulation, 110, 1738–1742. https://doi.org/10.1161/01.cir.0000143105.42988.fd

    Article  PubMed  Google Scholar 

  165. Kaku, D., Nakahira, A., Hirai, H., Sasaki, Y., Hosono, M., Bito, Y., Suehiro, Y., & Suehiro, S. (2013). Does rich coronary collateral circulation distal to chronically occluded left anterior descending artery compete with graft flow? Interactive Cardiovascular and Thoracic Surgery, 17, 944–949. https://doi.org/10.1093/icvts/ivt337

    Article  PubMed  PubMed Central  Google Scholar 

  166. Oshima, H., Tokuda, Y., Araki, Y., Ishii, H., Murohara, T., Ozaki, Y., & Usui, A. (2016). Predictors of early graft failure after coronary artery bypass grafting for chronic total occlusion. Interactive Cardiovascular and Thoracic Surgery, 23, 142–149. https://doi.org/10.1093/icvts/ivw084

    Article  PubMed  PubMed Central  Google Scholar 

  167. Takami, Y., & Masumoto, H. (2007). Angiographic fate of collateral vessels after surgical revascularization of the totally occluded left anterior descending artery. Annals of Thoracic Surgery, 83, 120–125. https://doi.org/10.1016/j.athoracsur.2006.08.033

    Article  PubMed  Google Scholar 

  168. Nusca, A., & Patti, G. (2012). Platelet function and inhibition in ischemic heart disease. Current Cardiology Reports, 14, 457–467. https://doi.org/10.1007/s11886-012-0280-z

    Article  PubMed  Google Scholar 

  169. Bi, W., Wang, J., Jiang, Y., Li, Q., Wang, S., Liu, M., Liu, Q., Li, F., Paul, C., Wang, Y., & Yang, H. T. (2021). Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Translational Medicine, 10, 756–772. https://doi.org/10.1002/sctm.20-0456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gladka, M. M., Kohela, A., Molenaar, B., Versteeg, D., Kooijman, L., Monshouwer-Kloots, J., Kremer, V., Vos, H. R., Huibers, M. M. H., Haigh, J. J., Huylebroeck, D., Boon, R. A., Giacca, M., & van Rooij, E. (2021). Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nature Communications, 12, 84. https://doi.org/10.1038/s41467-020-20361-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. M Sabra C Karbasiafshar A Aboulgheit S Raj MR Abid FW Sellke 2021 Clinical Application of Novel Therapies for Coronary Angiogenesis: Overview, Challenges, and Prospects International Journal of Molecular Sciences 22. https://doi.org/10.3390/ijms22073722

  172. Eelen, G., Treps, L., Li, X., & Carmeliet, P. (2020). Basic and Therapeutic Aspects of Angiogenesis Updated. Circulation Research, 127, 310–329. https://doi.org/10.1161/CIRCRESAHA.120.316851

    Article  CAS  PubMed  Google Scholar 

  173. Henning, R. J. (2021). Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. Journal of Cardiovascular Translational Research, 14, 195–212. https://doi.org/10.1007/s12265-020-10040-5

    Article  PubMed  Google Scholar 

  174. Kesidou, D., da Costa Martins, P. A., de Windt, L. J., Brittan, M., Beqqali, A., & Baker, A. H. (2020). Extracellular Vesicle miRNAs in the Promotion of Cardiac Neovascularisation. Frontiers in Physiology, 11, 579892. https://doi.org/10.3389/fphys.2020.579892

    Article  PubMed  PubMed Central  Google Scholar 

  175. Moghiman, T., Barghchi, B., Esmaeili, S. A., Shabestari, M. M., Tabaee, S. S., & Momtazi-Borojeni, A. A. (2021). Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Failure Reviews, 26, 205–213. https://doi.org/10.1007/s10741-020-10001-9

    Article  CAS  PubMed  Google Scholar 

  176. R Kwast van der PHA Quax AY Nossent 2019 An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization Cells 9. https://doi.org/10.3390/cells9010061

  177. Zhang, T. R., & Huang, W. Q. (2021). Angiogenic Exosome-Derived microRNAs: Emerging Roles in Cardiovascular Disease. Journal of Cardiovascular Translational Research, 14, 824–840. https://doi.org/10.1007/s12265-020-10082-9

    Article  PubMed  Google Scholar 

  178. Lu, W., Sheng, Z., Zhang, Z., Ma, G., Chen, L., Huang, J., Ding, J., & Dai, Q. (2020). LncRNA-LUNAR1 Levels Are Closely Related to Coronary Collaterals in Patients with Chronic Total Coronary Occlusion. Journal of Cardiovascular Translational Research, 13, 171–180. https://doi.org/10.1007/s12265-019-09917-x

    Article  PubMed  Google Scholar 

  179. Huang, M., Zheng, J., Chen, Z., You, C., & Huang, Q. (2020). The Relationship Between Circulating Neuregulin-1 and Coronary Collateral Circulation in Patients with Coronary Artery Disease. International Heart Journal, 61, 115–120. https://doi.org/10.1536/ihj.19-277

    Article  CAS  PubMed  Google Scholar 

  180. Molin, D., & Post, M. J. (2007). Therapeutic angiogenesis in the heart: Protect and serve. Current Opinion in Pharmacology, 7, 158–163. https://doi.org/10.1016/j.coph.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  181. Komai, Y., Nakano, A., & Niimi, H. (2005). Capillary angiogenesis and remodeling induced in rat limb by arteriovenous shunting. Clinical Hemorheology and Microcirculation, 32, 199–208.

    PubMed  Google Scholar 

  182. Rosenblum, J. M., Binongo, J., Wei, J., Liu, Y., Leshnower, B. G., Chen, E. P., Miller, J. S., Macheers, S. K., Lattouf, O. M., Guyton, R. A., Thourani, V. H., Halkos, M. E., & Keeling, W. B. (2021). Priorities in coronary artery bypass grafting: Is midterm survival more dependent on completeness of revascularization or multiple arterial grafts? Journal of Thoracic and Cardiovascular Surgery, 161(2070–2078), e2076. https://doi.org/10.1016/j.jtcvs.2019.11.125

    Article  Google Scholar 

  183. Wang, G. L., & Semenza, G. L. (1993). Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: Implications for models of hypoxia signal transduction. Blood, 82, 3610–3615.

    Article  CAS  PubMed  Google Scholar 

  184. Kaelin, W. G., Jr., & Ratcliffe, P. J. (2008). Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell, 30, 393–402. https://doi.org/10.1016/j.molcel.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  185. Chang, E. I., Loh, S. A., Ceradini, D. J., Chang, E. I., Lin, S. E., Bastidas, N., Aarabi, S., Chan, D. A., Freedman, M. L., Giaccia, A. J., & Gurtner, G. C. (2007). Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation, 116, 2818–2829. https://doi.org/10.1161/circulationaha.107.715847

    Article  CAS  PubMed  Google Scholar 

  186. Liu, Y., Zou, J., Liu, X., & Zhang, Q. (2019). MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-alpha. Experimental and Therapeutic Medicine, 18, 3325–3332. https://doi.org/10.3892/etm.2019.7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ho, Y. T., Poinard, B., & Kah, J. C. (2016). Nanoparticle drug delivery systems and their use in cardiac tissue therapy. Nanomedicine (London, England), 11, 693–714. https://doi.org/10.2217/nnm.16.6

    Article  CAS  Google Scholar 

  188. Rodness, J., Mihic, A., Miyagi, Y., Wu, J., Weisel, R. D., & Li, R. K. (2016). VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomaterialia, 45, 169–181. https://doi.org/10.1016/j.actbio.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  189. Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., Shah, P. K., Willerson, J. T., Benza, R. L., Berman, D. S., Gibson, C. M., Bajamonde, A., Rundle, A. C., Fine, J., & McCluskey, E. R. (2003). The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation, 107, 1359–1365. https://doi.org/10.1161/01.cir.0000061911.47710.8a

    Article  CAS  PubMed  Google Scholar 

  190. Simon-Yarza, T., Tamayo, E., Benavides, C., Lana, H., Formiga, F. R., Grama, C. N., Ortiz-de-Solorzano, C., Kumar, M. N., Prosper, F., & Blanco-Prieto, M. J. (2013). Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. International Journal of Pharmaceutics, 454, 784–790. https://doi.org/10.1016/j.ijpharm.2013.04.015

    Article  CAS  PubMed  Google Scholar 

  191. Oduk, Y., Zhu, W., Kannappan, R., Zhao, M., Borovjagin, A. V., Oparil, S., & Zhang, J. J. (2018). VEGF nanoparticles repair the heart after myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 314, H278-h284. https://doi.org/10.1152/ajpheart.00471.2017

    Article  CAS  PubMed  Google Scholar 

  192. Thirunavukkarasu, M., Selvaraju, V., Joshi, M., Coca-Soliz, V., Tapias, L., Saad, I., Fournier, C., Husain, A., Campbell, J., Yee, S. P., Sanchez, J. A., Palesty, J. A., McFadden, D. W., & Maulik, N. (2018). Disruption of VEGF Mediated Flk-1 Signaling Leads to a Gradual Loss of Vessel Health and Cardiac Function During Myocardial Infarction: Potential Therapy With Pellino-1. Journal of the American Heart Association, 7, e007601. https://doi.org/10.1161/jaha.117.007601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Calvert, J. W., Jha, S., Gundewar, S., Elrod, J. W., Ramachandran, A., Pattillo, C. B., Kevil, C. G., & Lefer, D. J. (2009). Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circulation Research, 105, 365–374. https://doi.org/10.1161/circresaha.109.199919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ling, K., Xu, A., Chen, Y., Chen, X., Li, Y., & Wang, W. (2019). Protective effect of a hydrogen sulfide donor on balloon injury-induced restenosis via the Nrf2/HIF-1alpha signaling pathway. International Journal of Molecular Medicine, 43, 1299–1310. https://doi.org/10.3892/ijmm.2019.4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kan, J., Guo, W., Huang, C., Bao, G., Zhu, Y., & Zhu, Y. Z. (2014). S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxidants & Redox Signaling, 20, 2303–2316. https://doi.org/10.1089/ars.2013.5449

    Article  CAS  Google Scholar 

  196. Osugi, T., Oshima, Y., Fujio, Y., Funamoto, M., Yamashita, A., Negoro, S., Kunisada, K., Izumi, M., Nakaoka, Y., Hirota, H., Okabe, M., Yamauchi-Takihara, K., Kawase, I., & Kishimoto, T. (2002). Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. Journal of Biological Chemistry, 277, 6676–6681. https://doi.org/10.1074/jbc.M108246200

    Article  CAS  PubMed  Google Scholar 

  197. G Hutchings K Janowicz L Moncrieff C Dompe E Strauss I Kocherova MJ Nawrocki L Kruszyna G Wasiatycz P Antosik JA Shibli P Mozdziak B Perek Z Krasinski B Kempisty M Nowicki 2020 The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21113790

  198. Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., Le Jemtel, T. H., & Alt, E. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677. https://doi.org/10.1093/eurheartj/ehm426

    Article  PubMed  Google Scholar 

  199. Wang, L., Deng, J., Tian, W., Xiang, B., Yang, T., Li, G., Wang, J., Gruwel, M., Kashour, T., Rendell, J., Glogowski, M., Tomanek, B., Freed, D., Deslauriers, R., Arora, R. C., & Tian, G. (2009). Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: An MR imaging study of rat hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297, H1020-1031. https://doi.org/10.1152/ajpheart.01082.2008

    Article  CAS  PubMed  Google Scholar 

  200. Zhao, L., Johnson, T., & Liu, D. (2017). Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Research & Therapy, 8, 125. https://doi.org/10.1186/s13287-017-0578-2

    Article  CAS  Google Scholar 

  201. Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., & Isner, J. M. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–228. https://doi.org/10.1161/01.res.85.3.221

    Article  CAS  PubMed  Google Scholar 

  202. Minami, Y., Nakajima, T., Ikutomi, M., Morita, T., Komuro, I., Sata, M., & Sahara, M. (2015). Angiogenic potential of early and late outgrowth endothelial progenitor cells is dependent on the time of emergence. International Journal of Cardiology, 186, 305–314. https://doi.org/10.1016/j.ijcard.2015.03.166

    Article  PubMed  Google Scholar 

  203. Sukmawati, D., & Tanaka, R. (2015). Introduction to next generation of endothelial progenitor cell therapy: A promise in vascular medicine. Am J Transl Res, 7, 411–421.

    PubMed  PubMed Central  Google Scholar 

  204. Steinle, H., Golombek, S., Behring, A., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2018). Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mRNAs. Mol Ther Nucleic Acids, 13, 387–398. https://doi.org/10.1016/j.omtn.2018.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, Y., Yang, Y., Wang, Z., Fu, X., Chu, X. M., Li, Y., Wang, Q., He, X., Li, M., Wang, K., Wang, J. X., Li, P. F., & Yu, T. (2020). Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis, 298, 14–26. https://doi.org/10.1016/j.atherosclerosis.2020.02.017

    Article  CAS  PubMed  Google Scholar 

  206. Holdt, L. M., Stahringer, A., Sass, K., Pichler, G., Kulak, N. A., Wilfert, W., Kohlmaier, A., Herbst, A., Northoff, B. H., Nicolaou, A., Gabel, G., Beutner, F., Scholz, M., Thiery, J., Musunuru, K., Krohn, K., Mann, M., & Teupser, D. (2016). Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nature Communications, 7, 12429. https://doi.org/10.1038/ncomms12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bonnans, C., Chou, J., & Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 15, 786–801. https://doi.org/10.1038/nrm3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Minor, A. J., & Coulombe, K. L. K. (2020). Engineering a collagen matrix for cell-instructive regenerative angiogenesis. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. https://doi.org/10.1002/jbm.b.34573

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sekine, H., Shimizu, T., Hobo, K., Sekiya, S., Yang, J., Yamato, M., Kurosawa, H., Kobayashi, E., & Okano, T. (2008). Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 118, S145-152. https://doi.org/10.1161/circulationaha.107.757286

    Article  CAS  PubMed  Google Scholar 

  210. Madden, L. R., Mortisen, D. J., Sussman, E. M., Dupras, S. K., Fugate, J. A., Cuy, J. L., Hauch, K. D., Laflamme, M. A., Murry, C. E., & Ratner, B. D. (2010). Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A, 107, 15211–15216. https://doi.org/10.1073/pnas.1006442107

    Article  PubMed  PubMed Central  Google Scholar 

  211. Munarin, F., & Coulombe, K. L. (2015). A novel 3-dimensional approach for cardiac regeneration. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 1741–1744. https://doi.org/10.1109/embc.2015.7318714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

none.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Cristiano Spadaccio, Antonio Nenna, David Rose and Francesco Piccirillo. The first draft of the manuscript was written by Cristiano Spadaccio, Antonio Nenna, David Rose and Francesco Piccirillo. Critical revision of the manuscript was performed by Annunziata Nusca, Francesco Grigioni, Massimo Chello and Gus Vlahakes. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cristiano Spadaccio.

Ethics declarations

Ethics Approval

Not applicable (review article).

Conflict of Interest

none. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Due to an error during the production process, space was missing between the words “Arteriogenesis” and “in” in the title of this article as originally published.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadaccio, C., Nenna, A., Rose, D. et al. The Role of Angiogenesis and Arteriogenesis in Myocardial Infarction and Coronary Revascularization. J. of Cardiovasc. Trans. Res. 15, 1024–1048 (2022). https://doi.org/10.1007/s12265-022-10241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10241-0

Keywords

Navigation