Skip to main content

Advertisement

Log in

Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The pleiotropic cytokine oncostatin M (OSM), a member of the glycoprotein (gp)130 ligand family, plays a key role in inflammation and cardiovascular disease. As inflammation precedes and accompanies pathological angiogenesis, we investigated the effect of OSM and other gp130 ligands on vascular endothelial growth factor (VEGF) production in human vascular smooth muscle cells (SMC). Human coronary artery SMC (HCASMC) and human aortic SMC (HASMC) were treated with different gp130 ligands. VEGF protein was determined by ELISA. Specific mRNA was detected by RT-PCR. Western blotting was performed for signal transducers and activators of transcription1 (STAT1), STAT3, Akt and p38 mitogen-activated protein kinase (p38 MAPK). OSM mRNA and VEGF mRNA expression was analyzed in human carotid endaterectomy specimens from 15 patients. OSM increased VEGF production in both HCASMC and HASMC derived from different donors. OSM upregulated VEGF and OSM receptor-specific mRNA in these cells. STAT3 inhibitor WP1066, p38 MAPK inhibitors SB-202190 and BIRB 0796, extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitors LY-294002 and PI-103 reduced OSM-induced VEGF synthesis. We found OSM expression in human atherosclerotic lesions where OSM mRNA correlated with VEGF mRNA expression. Interferon-γ (IFN-γ), but not IL-4 or IL-10, reduced OSM-induced VEGF production in vascular SMC. Our findings that OSM, which is present in human atherosclerotic lesions and correlates with VEGF expression, stimulates production of VEGF by human coronary artery and aortic SMC indicate that OSM could contribute to plaque angiogenesis and destabilization. IFN-γ reduced OSM-induced VEGF production by vascular SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. al-Azhary DB, Wojta J, Binder BR (1994) Fibrinolytic system of cultured rabbit aortic endothelial cells. Thromb Res 75:559–568. doi:10.1016/0049-3848(94)90230-5

    Article  CAS  PubMed  Google Scholar 

  2. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184:981–992. doi:10.1084/jem.184.3.981

    Article  CAS  PubMed  Google Scholar 

  3. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. doi:10.1042/BJ20070797

    Article  CAS  PubMed  Google Scholar 

  4. Belgore F, Blann A, Neil D, Ahmed AS, Lip GY (2004) Localisation of members of the vascular endothelial growth factor (VEGF) family and their receptors in human atherosclerotic arteries. J Clin Pathol 57:266–272. doi:10.1136/jcp.2003.012419

    Article  CAS  PubMed  Google Scholar 

  5. Bernard C, Merval R, Lebret M, Delerive P, Dusanter-Fourt I, Lehoux S, Creminon C, Staels B, Maclouf J, Tedgui A (1999) Oncostatin M induces interleukin-6 and cyclooxygenase-2 expression in human vascular smooth muscle cells: synergy with interleukin-1beta. Circ Res 85:1124–1131

    CAS  PubMed  Google Scholar 

  6. Blanchard F, Wang Y, Kinzie E, Duplomb L, Godard A, Baumann H (2001) Oncostatin M regulates the synthesis and turnover of gp130, leukemia inhibitory factor receptor alpha, and oncostatin M receptor beta by distinct mechanisms. J Biol Chem 276:47038–47045. doi:10.1074/jbc.M107971200

    Article  CAS  PubMed  Google Scholar 

  7. Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185. doi:10.1016/j.pharmthera.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Brasen JH, Kivela A, Roser K, Rissanen TT, Niemi M, Luft FC, Donath K, Yla-Herttuala S (2001) Angiogenesis, vascular endothelial growth factor and platelet-derived growth factor-BB expression, iron deposition, and oxidation-specific epitopes in stented human coronary arteries. Arterioscler Thromb Vasc Biol 21:1720–1726. doi:10.1161/hq1101.098230

    Article  CAS  PubMed  Google Scholar 

  9. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD (2001) Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425–429. doi:10.1038/86490

    Article  CAS  PubMed  Google Scholar 

  10. Couffinhal T, Kearney M, Witzenbichler B, Chen D, Murohara T, Losordo DW, Symes J, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol 150:1673–1685

    CAS  PubMed  Google Scholar 

  11. Demyanets S, Kaun C, Rychli K, Rega G, Pfaffenberger S, Afonyushkin T, Bochkov VN, Maurer G, Huber K, Wojta J (2007) The inflammatory cytokine oncostatin M induces PAI-1 in human vascular smooth muscle cells in vitro via PI 3-kinase and ERK1/2-dependent pathways. Am J Physiol Heart Circ Physiol 293:H1962–H1968. doi:10.1152/ajpheart.01366.2006

    Article  CAS  PubMed  Google Scholar 

  12. Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28:812–819. doi:10.1161/ATVBAHA.107.159327

    Article  CAS  PubMed  Google Scholar 

  13. Doyle B, Caplice N (2007) Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 49:2073–2080. doi:10.1016/j.jacc.2007.01.089

    Article  PubMed  Google Scholar 

  14. Dwivedi A, Sala-Newby GB, George SJ (2008) Regulation of cell–matrix contacts and beta-catenin signaling in VSMC by integrin-linked kinase: implications for intimal thickening. Basic Res Cardiol 103:244–256. doi:10.1007/s00395-007-0693-9

    Article  CAS  PubMed  Google Scholar 

  15. Faffe DS, Flynt L, Mellema M, Whitehead TR, Bourgeois K, Panettieri RA Jr, Silverman ES, Shore SA (2005) Oncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1beta. Am J Physiol Lung Cell Mol Physiol 288:L1040–L1048. doi:10.1152/ajplung.00333.2004

    Article  CAS  PubMed  Google Scholar 

  16. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791. doi:10.1161/ATVBAHA.108.179663

    Article  CAS  PubMed  Google Scholar 

  17. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol 102:393–411. doi:10.1007/s00395-007-0658-z

    Article  CAS  PubMed  Google Scholar 

  18. Fischer P, Hilfiker-Kleiner D (2008) Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects. Br J Pharmacol 153(Suppl 1):S414–S427. doi:10.1038/bjp.2008.1

    CAS  PubMed  Google Scholar 

  19. Gallicchio M, Argyriou S, Ianches G, Filonzi EL, Zoellner H, Hamilton JA, McGrath K, Wojta J (1994) Stimulation of PAI-1 expression in endothelial cells by cultured vascular smooth muscle cells. Arterioscler Thromb 14:815–823

    CAS  PubMed  Google Scholar 

  20. Gebhard C, Akhmedov A, Mocharla P, Angstenberger J, Sahbai S, Camici GG, Luscher TF, Tanner FC (2010) PDGF-CC induces tissue factor expression: role of PDGF receptor alpha/beta. Basic Res Cardiol 105:349–356. doi:10.1007/s00395-009-0060-0

    Article  CAS  PubMed  Google Scholar 

  21. Gebhard C, Stampfli SF, Gebhard CE, Akhmedov A, Breitenstein A, Camici GG, Holy EW, Luscher TF, Tanner FC (2009) Guggulsterone, an anti-inflammatory phytosterol, inhibits tissue factor and arterial thrombosis. Basic Res Cardiol 104:285–294. doi:10.1007/s00395-008-0757-5

    Article  CAS  PubMed  Google Scholar 

  22. Goebeler M, Yoshimura T, Toksoy A, Ritter U, Brocker EB, Gillitzer R (1997) The chemokine repertoire of human dermal microvascular endothelial cells and its regulation by inflammatory cytokines. J Invest Dermatol 108:445–451. doi:10.1111/1523-1747.ep12289711

    Article  CAS  PubMed  Google Scholar 

  23. Grosskreutz CL, Anand-Apte B, Duplaa C, Quinn TP, Terman BI, Zetter B, D’Amore PA (1999) Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 58:128–136. doi:10.1006/mvre.1999.2171

    Article  CAS  PubMed  Google Scholar 

  24. Grove RI, Eberhardt C, Abid S, Mazzucco C, Liu J, Kiener P, Todaro G, Shoyab M (1993) Oncostatin M is a mitogen for rabbit vascular smooth muscle cells. Proc Natl Acad Sci USA 90:823–827

    Article  CAS  PubMed  Google Scholar 

  25. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519. doi:10.1038/nri1882

    Article  CAS  PubMed  Google Scholar 

  26. Harvey EJ, Ramji DP (2005) Interferon-gamma and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 67:11–20. doi:10.1016/j.cardiores.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  27. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20. doi:10.1042/BJ20030407

    Article  CAS  PubMed  Google Scholar 

  28. Ichiki T, Jougasaki M, Setoguchi M, Imamura J, Nakashima H, Matsuoka T, Sonoda M, Nakamura K, Minagoe S, Tei C (2008) Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 294:H750–H763. doi:10.1152/ajpheart.00161.2007

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Itoh H, Ueda M, Naruko T, Kojima A, Komatsu R, Doi K, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Chun TH, Masatsugu K, Becker AE, Nakao K (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116

    CAS  PubMed  Google Scholar 

  30. Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188:359–368. doi:10.1002/jcp.1121

    Article  CAS  PubMed  Google Scholar 

  31. Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R, Kondo S, Priebe W, Kondo Y (2007) A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26:2435–2444. doi:10.1038/sj.onc.1210031

    Article  CAS  PubMed  Google Scholar 

  32. Kastl SP, Speidl WS, Katsaros KM, Kaun C, Rega G, Assadian A, Hagmueller GW, Hoeth M, de Martin R, Ma Y, Maurer G, Huber K, Wojta J (2009) Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation. Blood 114:2812–2818. doi:10.1182/blood-2009-01-200915

    CAS  PubMed  Google Scholar 

  33. Kastl SP, Speidl WS, Kaun C, Katsaros KM, Rega G, Afonyushkin T, Bochkov VN, Valent P, Assadian A, Hagmueller GW, Hoeth M, de Martin R, Ma Y, Maurer G, Huber K, Wojta J (2008) In human macrophages the complement component C5a induces the expression of oncostatin M via AP-1 activation. Arterioscler Thromb Vasc Biol 28:498–503. doi:10.1161/ATVBAHA.107.160580

    Article  CAS  PubMed  Google Scholar 

  34. Mirshahi F, Vasse M, Tedgui A, Li H, Merval R, Legrand E, Vannier JP, Soria J, Soria C (2002) Oncostatin M induces procoagulant activity in human vascular smooth muscle cells by modulating the balance between tissue factor and tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 13:449–455

    Article  CAS  PubMed  Google Scholar 

  35. Modur V, Feldhaus MJ, Weyrich AS, Jicha DL, Prescott SM, Zimmerman GA, McIntyre TM (1997) Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest 100:158–168. doi:10.1172/JCI119508

    Article  CAS  PubMed  Google Scholar 

  36. Nagata T, Kai H, Shibata R, Koga M, Yoshimura A, Imaizumi T (2003) Oncostatin M, an interleukin-6 family cytokine, upregulates matrix metalloproteinase-9 through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cultured smooth muscle cells. Arterioscler Thromb Vasc Biol 23:588–593. doi:10.1161/01.ATV.0000060891.31516.24

    Article  CAS  PubMed  Google Scholar 

  37. Nishibe T, Parry G, Ishida A, Aziz S, Murray J, Patel Y, Rahman S, Strand K, Saito K, Saito Y, Hammond WP, Savidge GF, Mackman N, Wijelath ES (2001) Oncostatin M promotes biphasic tissue factor expression in smooth muscle cells: evidence for Erk-1/2 activation. Blood 97:692–699

    Article  CAS  PubMed  Google Scholar 

  38. Pourtau J, Soria C, Paysant J, Vannier JP, Vasse M (1998) In vitro effect of oncostatin M on the release by endothelial cells of von Willebrand factor, tissue-type plasminogen activator and plasminogen activator inhibitor-1. Blood Coagul Fibrinolysis 9:609–615

    Article  CAS  PubMed  Google Scholar 

  39. Ray PS, Fox PL (2007) A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J 26:3360–3372. doi:10.1038/sj.emboj.7601774

    Article  CAS  PubMed  Google Scholar 

  40. Rega G, Kaun C, Demyanets S, Pfaffenberger S, Rychli K, Hohensinner PJ, Kastl SP, Speidl WS, Weiss TW, Breuss JM, Furnkranz A, Uhrin P, Zaujec J, Zilberfarb V, Frey M, Roehle R, Maurer G, Huber K, Wojta J (2007) Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arterioscler Thromb Vasc Biol 27:1587–1595. doi:10.1161/ATVBAHA.107.143081

    Article  CAS  PubMed  Google Scholar 

  41. Repovic P, Fears CY, Gladson CL, Benveniste EN (2003) Oncostatin-M induction of vascular endothelial growth factor expression in astroglioma cells. Oncogene 22:8117–8124. doi:10.1038/sj.onc.1206922

    Article  CAS  PubMed  Google Scholar 

  42. Rychli K, Kaun C, Hohensinner PJ, Rega G, Pfaffenberger S, Vyskocil E, Breuss JM, Furnkranz A, Uhrin P, Zaujec J, Niessner A, Maurer G, Huber K, Wojta J (2010) The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cells in vitro and in vivo. J Thromb Haemost 8:596–604. doi:10.1111/j.1538-7836.2010.03741.x

    Article  CAS  PubMed  Google Scholar 

  43. Sgadari C, Farber JM, Angiolillo AL, Liao F, Teruya-Feldstein J, Burd PR, Yao L, Gupta G, Kanegane C, Tosato G (1997) Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89:2635–2643

    CAS  PubMed  Google Scholar 

  44. Shioi A, Katagi M, Okuno Y, Mori K, Jono S, Koyama H, Nishizawa Y (2002) Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages. Circ Res 91:9–16. doi:10.1161/01.RES.0000026421.61398.F2

    Article  CAS  PubMed  Google Scholar 

  45. Tabibiazar R, Wagner RA, Ashley EA, King JY, Ferrara R, Spin JM, Sanan DA, Narasimhan B, Tibshirani R, Tsao PS, Efron B, Quertermous T (2005) Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease. Physiol Genomics 22:213–226. doi:10.1152/physiolgenomics.00001.2005

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka M, Miyajima A (2003) Oncostatin M, a multifunctional cytokine. Rev Physiol Biochem Pharmacol 149:39–52. doi:10.1007/s10254-003-0013-1

    Article  CAS  PubMed  Google Scholar 

  47. Vasse M, Pourtau J, Trochon V, Muraine M, Vannier JP, Lu H, Soria J, Soria C (1999) Oncostatin M induces angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 19:1835–1842

    CAS  PubMed  Google Scholar 

  48. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061. doi:10.1161/01.ATV.0000178991.71605.18

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Keiser JA (1998) Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ Res 83:832–840

    CAS  PubMed  Google Scholar 

  50. Weiss TW, Speidl WS, Kaun C, Rega G, Springer C, Macfelda K, Losert UM, Grant SL, Marro ML, Rhodes AD, Fuernkranz A, Bialy J, Ullrich R, Holzmann P, Pacher R, Maurer G, Huber K, Wojta J (2003) Glycoprotein 130 ligand oncostatin-M induces expression of vascular endothelial growth factor in human adult cardiac myocytes. Cardiovasc Res 59:628–638. doi:10.1016/S0008-6363(03)00463-2

    Article  CAS  PubMed  Google Scholar 

  51. Wen FQ, Liu X, Manda W, Terasaki Y, Kobayashi T, Abe S, Fang Q, Ertl R, Manouilova L, Rennard SI (2003) TH2 cytokine-enhanced and TGF-beta-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-gamma and corticosteroids. J Allergy Clin Immunol 111:1307–1318. doi:10.1067/mai.2003.1455

    Article  CAS  PubMed  Google Scholar 

  52. Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC (2010) Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol 105:267–277. doi:10.1007/s00395-009-0055-x

    Article  CAS  PubMed  Google Scholar 

  53. Yao JS, Chen Y, Zhai W, Xu K, Young WL, Yang GY (2004) Minocycline exerts multiple inhibitory effects on vascular endothelial growth factor-induced smooth muscle cell migration: the role of ERK1/2, PI3K, and matrix metalloproteinases. Circ Res 95:364–371. doi:10.1161/01.RES.0000138581.04174.2f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.D. was a recipient of a scholarship from the Austrian Heart Foundation. The work was supported by the Association for the Promotion of Research in Arteriosclerosis, Thrombosis and Vascular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Wojta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demyanets, S., Kaun, C., Rychli, K. et al. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Basic Res Cardiol 106, 217–231 (2011). https://doi.org/10.1007/s00395-010-0141-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0141-0

Keywords

Navigation