Skip to main content
Log in

Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adrian RJ (1986) Multi-point optical measurements of simultaneous vectors in unsteady flow-a review. Int J Heat Fluid Flow 7:127–145

    Article  Google Scholar 

  • Adrian R (1991) Particle-Imaging Techniques For Experimental Fluid-Mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Akutsu T, Fukuda T (2005) Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses. J Artif Organs 8:171–183

    Article  Google Scholar 

  • Akutsu T, Masuda T (2003) Three-dimensional flow analysis of a mechanical bileaflet mitral prosthesis. J Artif Organs 6:112–123

    Google Scholar 

  • Asami R, Tanaka T, Kawabata K et al (2017) Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory. J Echocardiogr 15(2):57–66

    Article  Google Scholar 

  • Bermejo J, Benito Y, Alhama M et al (2014) Intraventricular vortex properties in non-ischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 718–729

  • Bermejo J, Martínez-Legazpi P, del Álamo JC (2015) The clinical assessment of intraventricular flows. Annu Rev Fluid Mech 47:315–342

    Article  MathSciNet  Google Scholar 

  • Bolger AF, Heiberg E, Karlsson M et al (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9:741–747

    Article  Google Scholar 

  • Borazjani I, Westerdale J, McMahon EM et al (2013) Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound. Comput Math Methods Med 2013(3):395081

    MathSciNet  MATH  Google Scholar 

  • Brücker C, Hess D, Kitzhofer J (2012) Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching. Meas Sci Technol 24:024001

    Article  Google Scholar 

  • Buchmann NA, Atkinson C, Jeremy MC, Soria J (2011) Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50:1131–1151

    Article  Google Scholar 

  • Carlhäll CJ, Bolger A (2010) Passing strange flow in the failing ventricle. Circ Hear Fail 3:326–331

    Article  Google Scholar 

  • Choi YJ, Vedula V, Mittal R (2014) Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann Biomed Eng 42:1668–1680

    Article  Google Scholar 

  • De Silva CM, Philip J, Marusic I (2013) Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics. Exp Fluids 54:1–17

    Article  Google Scholar 

  • Domenichini F, Querzoli G, Cenedese A, Pedrizzetti G (2007) Combined experimental and numerical analysis of the flow structure into the left ventricle. J Biomech 40:1988–1994

    Article  Google Scholar 

  • Doost SN, Ghista D, Su B et al (2016) Heart blood flow simulation: a perspective review. Biomed Eng Online 15:101

    Article  Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Eriksson J (2013) Quantification of 4D left ventricular blood flow in health and disease. PhD thesis

  • Falahatpisheh A, Kheradvar A (2012) High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. Eur J Mech B/Fluids 35:2–8

    Article  Google Scholar 

  • Falahatpisheh A, Pedrizzetti G, Kheradvar A (2014) Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields. Exp Fluids 55:1–15

    Article  Google Scholar 

  • Faludi R, Szulik M, D’hooge J et al (2010) Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: An in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg 139:1501–1510

    Article  Google Scholar 

  • Forleo M, Dasi LP (2014) Effect of hypertension on the closing dynamics and lagrangian blood damage index measure of the B-datum regurgitant jet in a bileaflet mechanical heart valve. Ann Biomed Eng 42:110–122

    Article  Google Scholar 

  • Fortini S, Querzoli G, Espa S, Cenedese A (2013) Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp Fluids 54:1–9

    Article  Google Scholar 

  • Gao Q, Wang H, Shen G (2013) Review on development of volumetric particle image velocimetry. Chinese Sci Bull 58:4541–4556. https://doi.org/10.1007/s11434-013-6081-y

    Article  Google Scholar 

  • GE L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: reynolds vs. viscous stresses. Ann Biomed Eng 36(2):276–297

    Article  Google Scholar 

  • Geest RJ, Garg P (2016) Advanced analysis techniques for intra-cardiac flow evaluation from 4D flow MRI article in current radiology reports July 2016 advanced analysis techniques for intra-cardiac flow evaluation from 4D flow MRI. Curr Radiol Rep 4:38

    Article  Google Scholar 

  • Gono T, Syuto T, Yamagata T, Fujisawa N (2012) Time-resolved scanning stereo PIV measurement of three-dimensional velocity field of highly buoyant jet. J Vis 15:231–240

    Article  Google Scholar 

  • Hori T, Sakakibara J (2004) High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids. Meas Sci Technol 15:1067–1078

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69

    Article  MathSciNet  MATH  Google Scholar 

  • Kheradvar A, Houle H, Pedrizzetti G et al (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23:86–94

    Article  Google Scholar 

  • Kheradvar A, Groves EM, Falahatpisheh A et al (2015) Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann Biomed Eng 43:2314–2333

    Article  Google Scholar 

  • Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404:759–761

    Article  Google Scholar 

  • Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiograph. J Am Soc Echocardiogr 18:1440–1463

    Article  Google Scholar 

  • Lynch K (2012) Three-dimensional particle image velocimetry using a plenoptic camera. In: 50th AIAA aerospace sciences meeting. Nashville, TN, pp 1–14

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetryin three dimensional flows. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Meng H, Pan G, Pu Y, Woodward SH (2004) Holographic particle image velocimetry: from film to digital recording. Meas Sci Technol 15:673–685

    Article  Google Scholar 

  • Meynart R (1982) Convective flow field measurement by speckle velocimetry. Rev Phys Appliquée 17:301–305

    Article  Google Scholar 

  • Muñoz DR, Markl M, Mur JLM et al (2013) Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging 14:1029–1038

    Article  Google Scholar 

  • Najjari MR, Hinke JA, Bulusu KV, Plesniak MW (2016) On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp Fluids 57:1–6

    Article  Google Scholar 

  • Narrow TL, Yoda M, Abdel-Khalik SI (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28:282–283

    Article  Google Scholar 

  • Novara M, Schanz D, Reuther N, Kähler CJ, Schröder A (2016) Lagrangian 3D particle tracking in high-speed flows: shake-the-box for multi-pulse systems. Exp In Fluids 57:128

    Article  Google Scholar 

  • Okafor IU, Santhanakrishnan A, Chaffins BD et al (2015) Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics. J Cardiovasc Magn Reson 17:51

    Article  Google Scholar 

  • Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95:1–4

    Article  Google Scholar 

  • Pedrizzetti G, La Canna G, Alfieri O, Tonti G (2014) The vortex—an early predictor of cardiovascular outcome? Nat Rev Cardiol 11:545–553

    Article  Google Scholar 

  • Pierrakos O, Vlachos PP, Telionis DP (2004) Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J Biomech Eng 126:714–726

    Article  Google Scholar 

  • Ponitz B, Sastuba M, Brücker C, Kitzhofer J (2016) 4D visualization study of a vortex ring life cycle using modal analyses. J Vis 19:237

    Article  Google Scholar 

  • Prasad AK (2000a) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116

    Article  Google Scholar 

  • Prasad AK (2000b) Particle Image Velocimetry. Curr Sci 79:51–60

    Google Scholar 

  • Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22:041901

    Article  MATH  Google Scholar 

  • Raffel M, Willert C, Kompenhans J (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, New York

    Google Scholar 

  • Scarano F (2012) Tomographic PIV: principles and practice. Meas Sci Technol 24:12001

    Article  Google Scholar 

  • Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:70

    Article  Google Scholar 

  • Sengupta PP, Pedrizzetti G, Kilner PJ et al (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5:305–316

    Article  Google Scholar 

  • Siebes M, Ventikos Y (2010) The role of biofluid mechanics in the assessment of clinical and pathological observations: Sixth international bio-fluid mechanics symposium and workshop, March 28–30, 2008 Pasadena, California. Ann Biomed Eng 38:1216–1224

    Article  Google Scholar 

  • Sotiropoulos F, Le TB, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283

    Article  MathSciNet  MATH  Google Scholar 

  • Töger J, Bidhult S, Revstedt J et al (2016) Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn Reson Med 75:1064–1075

    Article  Google Scholar 

  • Tsai RY (1986) An efficient and accurate camera calibration technique for 3D machine vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR’86)

  • Van Rijk-Zwikker GL, Delemarre BJ, Huysmans H (1996) The orientation of the bi-leaflet CarboMedics valve in the mitral position determines left ventricular spatial flow patterns. Eur J Cardiothorac Surg 10:513–520

    Article  Google Scholar 

  • Vedula V, Fortini S, Seo JH et al (2014) Computational modeling and validation of intraventricular flow in a simple model of the left ventricle. Theor Comput Fluid Dyn 28:589–604

    Article  Google Scholar 

  • Vierendeels JA, Riemslagh K, Dick E, Verdonck P (2000) Computer simulation of intraventricular flow and pressure gradients during diastole. J Biomech Eng 122:667–674

    Article  Google Scholar 

  • Westerdale JC, Adrian R, Squires K et al (2015) Effects of bileaflet mechanical mitral valve rotational orientation on left ventricular flow conditions. Open Cardiovasc Med J 9:62–68

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  • Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280

    Article  Google Scholar 

  • Willert CE, Gharib M (1992) Three-dimensional particle imaging with a single camera Exp. Fluids 12:353–358

    Google Scholar 

  • Yagi T, Yang W, Ishikawa D et al (2006) Stereoscopic particle image velocimetry for application in three-dimensional flow within a spiral vortex. Pulsatile Blood Pump 26:53–62

    Google Scholar 

  • Yagi T, Yang W, Umezu M (2011) Effect of bileaflet valve orientation on the 3d flow dynamics in the sinus of valsalva. J Biomech Sci Eng 6:64–78. https://doi.org/10.1299/jbse.6.64

    Article  Google Scholar 

  • Yoganathan AP, Chandran KB, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33:1689–1694

    Article  Google Scholar 

  • Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Saaid.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 7918 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saaid, H., Segers, P., Novara, M. et al. Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model. Exp Fluids 59, 49 (2018). https://doi.org/10.1007/s00348-018-2504-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2504-5

Navigation