Skip to main content
Log in

Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The Shake-The-Box (STB) particle tracking technique, recently introduced for time-resolved 3D particle image velocimetry (PIV) images, is applied here to data from a multi-pulse investigation of a turbulent boundary layer flow with adverse pressure gradient in air at 36 m/s (Re τ  = 10,650). The multi-pulse acquisition strategy allows for the recording of four-pulse long time-resolved sequences with a time separation of a few microseconds. The experimental setup consists of a dual-imaging system and a dual-double-cavity laser emitting orthogonal polarization directions to separate the four pulses. The STB particle triangulation and tracking strategy is adapted here to cope with the limited amount of realizations available along the time sequence and to take advantage of the ghost track reduction offered by the use of two independent imaging systems. Furthermore, a correction scheme to compensate for camera vibrations is discussed, together with a method to accurately identify the position of the wall within the measurement domain. Results show that approximately 80,000 tracks can be instantaneously reconstructed within the measurement volume, enabling the evaluation of both dense velocity fields, suitable for spatial gradients evaluation, and highly spatially resolved boundary layer profiles. Turbulent boundary layer profiles obtained from ensemble averaging of the STB tracks are compared to results from 2D-PIV and long-range micro particle tracking velocimetry; the comparison shows the capability of the STB approach in delivering accurate results across a wide range of scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Atkinson C, Soria J (2009) An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp Fluids 47:563–578

    Article  Google Scholar 

  • Ben Salah R, Alata O, Tremblais B, Thomas L, David L (2015) Particle Volume Reconstruction based on a marked point process and application to Tomo-PIV. 23rd European Signal Processing Conference

  • Cierpka C, Lütke B, Kähler CJ (2013a) Higher order multi-frame particle tracking velocimetry. Exp Fluids 54:1533–1545

    Article  Google Scholar 

  • Cierpka C, Scharnowski S, Kähler CJ (2013b) Parallax correction for precise near-wall flow investigations using particle imaging. Appl Opt 52:2923–2931

    Article  Google Scholar 

  • Cornic P, Champagnat F, Cheminet A, Leclaire B, Le Besnerais G (2013) Computationally efficient sparse algorithms for tomographic PIV reconstruction. In: 10th symposium PIV Delft, The Netherlands

  • Cornic P, Champagnat F, Plyer A, Leclaire B, Cheminet A, Le Besnerais G (2014) Tomo-PTV with sparse tomographic reconstruction and optical flow. In: 17th international symposium on application of laser techniques to fluid mechanics, Lisbon, Portugal, 7–10 July

  • Discetti S, Ianiro A, Astarita T, Cardone G (2013) On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry. Meas Sci Technol 24:075302

    Article  Google Scholar 

  • Duncan J, Dabiri D, Hove J, Gharib M (2010) Universal outlier detection for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) data. Meas Sci Technol 21:057002

    Article  Google Scholar 

  • Elsinga GE, Tokgoz S (2014) Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV. Meas Sci Technol 24:035305

    Google Scholar 

  • Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947

    Article  Google Scholar 

  • Elsinga GE, Westerweel J, Scarano F, Novara M (2011) On the velocity of ghost particles and the bias error in tomographic-PIV. Exp Fluids 50:825–838

    Article  Google Scholar 

  • Geisler R (2014) A fast double shutter system for CCD image sensors. Meas Sci Technol 25:025404

    Article  Google Scholar 

  • Gesemann S (2016) From particle tracks to velocity and acceleration fields using B-splines and penalties. arXiv:1510.09034

  • Herman GT, Lent A (1976) Iterative reconstruction algorithms. Comput Biol Med 6:273–294

    Article  Google Scholar 

  • Huhn F, Schanz D, Gesemann S, Schröder A (2015) Pressure fields from high-resolution time-resolved particle tracking velocimetry in 3D turbulent flows. In: Proceedings of NIM2015 workshop, Poitiers, France

  • Kähler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29:S70–S77

    Article  Google Scholar 

  • Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by mean of long-distance micro-PIV. Exp Fluids 41:327–341

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012a) On the resolution limit of digital PIV. Exp Fluids 52:1629–1639

    Article  Google Scholar 

  • Kähler CJ, Scharnowski S, Cierpka C (2012b) On the uncertainty of digital PIV and PTV near walls. Exp Fluids 52:1641–1656

    Article  Google Scholar 

  • Kasagi N, Nishino K (1990) Probing turbulence with three-dimensional particle tracking velocimetry’. Exp Therm Fluid Sci 4:601–612

    Article  Google Scholar 

  • Lynch KP, Scarano F (2013) A high-order time-accurate interrogation method for time-resolved PIV. Meas Sci Technol 24:035305

    Article  Google Scholar 

  • Lynch KP, Scarano F (2014) Material acceleration estimation by four-pulse tomo-PIV. Meas Sci Technol 25:084005

    Article  Google Scholar 

  • Lynch KP, Scarano F (2015) An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV. Exp Fluids 56:66

    Google Scholar 

  • Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three dimensional flows. Exp Fluids 15:133–146

    Article  Google Scholar 

  • Michaelis D, Wolf C (2011) Vibration compensation for tomographic PIV using single image volume self-calibration. In: 9th international symposium of PIV, Kobe, Japan

  • Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced MART for tomographic PIV. Meas Sci Technol 21:035401

    Article  Google Scholar 

  • Novara M, Ianiro A, Scarano F (2013) Adaptive interrogation for 3D-PIV. Meas Sci Technol 24:024012

    Article  Google Scholar 

  • Novara M, Schanz D, Gesemann S, Lynch K, Schröder A (2016) Lagrangian 3D particle tracking for multi-pulse systems: performance assessment and application of Shake-The-Box. In: 18th international symposium on application of laser techniques to fluid mechanics, Lisbon, Portugal, 4–7 July

  • Reuther N, Schanz D, Scharnowski S, Hain R, Schröder A, Kähler CJ (2015) Experimental investigation of adverse pressure gradient turbulent boundary layers by means of large-scale PIV. In: 11th symposium PIV, Santa Barbara, CA, USA

  • Schanz D, Gesemann S, Schröder A, Wieneke B, Novara M (2013a) Non-uniform optical transfer function in particle imaging: calibration and application to tomographic reconstruction. Meas Sci Technol 24:024009

    Article  Google Scholar 

  • Schanz D, Schröder A, Gesemann S, Michaelis D, Wieneke B (2013b) Shake-the-Box: a highly efficient and accurate tomographic particle tracking velocimetry (TOMO-PTV) method using prediction of particle position. In: 10th symposium PIV, Delft, The Netherlands

  • Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:70

    Article  Google Scholar 

  • Scharnowski S, Kähler CJ (2013) On the effect of curved streamlines on the accuracy of PIV vector fields. Exp Fluids 54:1435

    Article  Google Scholar 

  • Schröder A, Schanz D, Geisler R, Willert C, Michaelis D (2013) Dual-volume and four-pulse tomo-PIV using polarized light. In: 10th symposium PIV, Delft, The Netherlands

  • Schröder A, Schanz D, Michaelis D, Cierpka C, Scharnowski S, Kähler CJ (2015) Advances of PIV and 4D-PTV Shake-The-Box for turbulent flow analysis—the flow over periodic hills. Flow Turbul Combust. doi:10.1007/s10494-015-9616-2

    Google Scholar 

  • Theunissen R, Scarano F, Riethmuller ML (2008) On the improvement of PIV image interrogation near stationary interfaces. Exp Fluids 45:557–572

    Article  Google Scholar 

  • Van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol 24:032001

    Article  Google Scholar 

  • Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556

    Article  Google Scholar 

  • Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008

    Article  Google Scholar 

Download references

Acknowledgments

This work has been conducted in the framework of the DFG-project “Analyse turbulenter Grenzschichten mit Druckgradient bei großen Reynoldszahlen mit hochauflösenden Vielkameramessverfahren” (Grant KA 1808/14-1 and SCHR 1165/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Novara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novara, M., Schanz, D., Reuther, N. et al. Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems. Exp Fluids 57, 128 (2016). https://doi.org/10.1007/s00348-016-2216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-016-2216-7

Keywords

Navigation