Skip to main content
Log in

A blood-mimicking fluid for particle image velocimetry with silicone vascular models

  • Letter
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

For accurate particle image velocimetry measurements in hemodynamics studies, it is important to use a fluid with a refractive index (n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers (n = 1.40–1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4 ± 0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2 ± 0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom (n = 1.4140 ± 0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol–water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4.31 ± 0.03 cP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bor-Kucukatay M, Keskin A, Akdam H et al (2008) Effect of thrombocytapheresis on blood rheology in healthy donors: role of nitric oxide. Transf Apheres Sci 39:101–108. doi:10.1016/j.transci.2008.07.004

    Article  Google Scholar 

  • Carrera LI, Etchepare R, D’Arrigo M et al (2008) Hemorheologic changes in type 2 diabetic patients with microangiopathic skin lesions. A linear discriminant categorizing analysis. J Diabetesv Complicat 22:132–136. doi:10.1016/j.jdiacomp.2007.06.001

    Article  Google Scholar 

  • D’Errico J (2006) “Polyfitn” (http://www.mathworks.com/matlabcentral/fileexchange/10065), MATLAB Central File Exchange. Last retrieved 9 July 2010

  • Fehr M, Galliard-Grigioni KS, Reinhart WH (2008) Influence of acute alcohol exposure on hemorheological parameters and platelet function in vivo and in vitro. Clin Hemorheol Microcirc 39:351–358. doi:10.3233/ch-2008-1102

    Google Scholar 

  • Fontaine AA, Ellis JT, Healy TM, Hopmeyer J, Yoganathan AP (1996) Identification of peak stresses in cardiac prostheses—a comparison of two-dimensional versus three-dimensional principal stress analyses. ASAIO J 42:154–163

    Google Scholar 

  • Galduroz JCF, Antunes HK, Santos RF (2007) Gender- and age-related variations in blood viscosity in normal volunteers: a study of the effects of extract of Allium sativum and Ginkgo biloba. Phytomedicine 14:447–451. doi:10.1016/j.phymed.2007.06.002

    Article  Google Scholar 

  • Grigioni M, Daniele C, D’Avenio G, Barbaro V (2001) The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J Biomech 34:613–621

    Article  Google Scholar 

  • Hopkins LM, Kelly JT, Wexler AS, Prasad AK (2000) Particle image velocimetry measurements in complex geometries. Exp Fluids 29:91–95

    Article  Google Scholar 

  • Kadambi JR, Chen RC, Bhunia S, Dybbs AZ, Edwards RV, Rutstein A (1990) Measurement of solid-liquid multiphase flow using refractive-index matching technique. Paper presented at the third international conference on laser anemometry—advances and applications, Swansea, Wales, 26–29 September 1989

  • Lim WL, Chew YT, Chew TC, Low HT (2001) Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J Biomech 34:1417–1427

    Article  Google Scholar 

  • Miller P, Danielson K, Moody G, Slifka A, Drexler E, Hertzberg J (2006) Matching index of refraction using a diethyl phthalate/ethanol solution for in vitro cardiovascular models. Exp Fluids 41:375–381. doi:10.1007/s00348-006-0146-5

    Article  Google Scholar 

  • Morsi YS, Sakhaeimanesh A, Clayton BR (2000) Hydrodynamic evaluation of three artificial aortic valve chambers. Artif Organs 24:57–63

    Article  Google Scholar 

  • Narrow TL, Yoda M, Abdel-Khalik SI (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28:282–283

    Article  Google Scholar 

  • Nguyen TT, Biadillah Y, Mongrain R, Brunette J, Tardif JC, Bertrand OF (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng Trans ASME 126:529–535. doi:10.1115/1.1785812

    Article  Google Scholar 

  • Nishino K, Choi J-W (2006) Index-matching PIV for complex flow geometry. In: 4th Japan–Korea joint seminar on particle image velocimetry, Kobe, Japan

  • Poepping TL, Nikolov HN, Thorne ML, Holdsworth DW (2004) A thin-walled carotid vessel phantom for doppler ultrasound flow studies. Ultrasound Med Biol 30:1067–1078. doi:10.1016/j.ultrasmedbio.2004.06.003

    Article  Google Scholar 

  • Poepping TL, Rankin RN, Holdsworth DW (2010) Flow patterns in carotid bifurcation models using pulsed Doppler ultrasound: Effect of concentric versus eccentric stenosis. Ultrasound Med Biol 36:1125–1134

    Google Scholar 

  • Rajzer MW, Klocek M, Wojciechowska W, Palka I, Kawecka-Jaszcz KL (2007) Relationship between, blood viscosity, shear stress and arterial stiffness in patients with arterial hypertension. In: Artery 7, Prague, Czech Republic, p 65

  • Ramnarine KV, Nassiri DK, Hoskins PR, Lubbers J (1998) Validation of a new blood-mimicking fluid for use in Doppler flow test objects. Ultrasound Med Biol 24:451–459

    Article  Google Scholar 

  • Raz S, Einav S, Alemu Y, Bluestein D (2007) DPIV prediction of flow induced platelet activation—comparison to numerical predictions. Ann Biomed Eng 35:493–504. doi:10.1007/s10439-007-9257-2

    Article  Google Scholar 

  • Sankovic JM, Kadambi JR, Mehta M, Smith WA, Wernet MP (2004) PIV investigations of the flow field in the volute of a rotary blood pump. J Fluids Eng Trans ASME 126:730–734. doi:10.1115/1.1789529

    Article  Google Scholar 

  • Sastry S, Kadambi JR, Sankovic JM, Izraelev V (2006) Study of flow field in an advanced bladeless rotary blood pump using particle image velocimetry. In: Lisbon, Portugal

  • Smith RF, Rutt BK, Fox AJ, Rankin RN, Holdsworth DW (1996) Geometric characterization of stenosed human carotid arteries. Acad Radiol 3:898–911

    Article  Google Scholar 

  • Smith RF, Rutt BK, Holdsworth DW (1999) Anthropomorphic carotid bifurcation phantom for MRI applications. J Magn Reson Imaging 10:533–544

    Article  Google Scholar 

  • Teirlinck CJPM, Fish P, Hoskins PR et al (1997) Validation of a flow Doppler test object for diagnostic ultrasound scanners. TNO Prev Health, Leiden

    Google Scholar 

  • Vaya A, Murado J, Santaolaria M et al (2008) Haemorheological changes in patients with systemic lupus erythematosus do not seem to be related to thrombotic events. Clin Hemorheol Microcirc 38:23–29

    Google Scholar 

  • Weast RC (1969) Viscosity of liquids. In: Weast RC (ed) CRC handbook of chemistry and physics, 49th edn. CRC Press, Clevelend, pp F37–F42

    Google Scholar 

  • Yagi T, Yang W, Ishikawa D, Sudo H, Iwasaki K, Umezu M (2006) Multiplane scanning stereo-PIV measurements of flow inside a spiral vortex pulsatile blood pump. In: 13th international symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal

  • Yip R, Mongrain R, Ranga A, Brunette J, Cartier R (2004) Development of anatomically correct mock-ups of the aorta for PIV investigations. In: Inaugural CDEN design conference, Montréal, Canada

  • Yousif MY (2009) Developing a blood-mimicking fluid for particle image velocimetry with silicone vascular models. MESc dissertation, University of Western Ontario

Download references

Acknowledgments

The authors would like to acknowledge Hristo Nikolov for phantom fabrication. Financial support is acknowledged from the Heart and Stroke Foundation of Ontario (grant #T-6427). The Natural Sciences and Engineering Research Council of Canada (TLP), Canadian Institutes of Health Research Training Fellowship in Vascular Research (MYY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamie L. Poepping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousif, M.Y., Holdsworth, D.W. & Poepping, T.L. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50, 769–774 (2011). https://doi.org/10.1007/s00348-010-0958-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0958-1

Keywords

Navigation