Skip to main content

Advertisement

Log in

Recent progress in metabolic engineering of microbial formate assimilation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Formate can be efficiently produced via electrochemical or photochemical catalytic conversion of CO2, and it can be directly used as an organic carbon source by microorganisms. In theory, formate can be used as the sole carbon source for the microbial production of high-value-added chemicals. Consequently, the construction of efficient formate-assimilation pathways in microorganisms is essential for the utilization of cheap, renewable one-carbon compounds. This paper summarizes new methods of formate synthesis, as well as the natural formate utilization pathways of microorganisms with their advantages and disadvantages. Furthermore, it reviews recent progress in the design of utilization pathways for formate in microbial cells through metabolic engineering and synthetic biology. Besides, we also use the pathway-prediction algorithm comb-FBA to rationally design completely new one-carbon compounds utilization pathways. The pathway with the highest efficiency, named GAA, was corroborated by the in vitro experiments showing a carbon molar yield up to 88%. Finally, it discusses the main problems and challenges presently existing in the pathway design and strain improvement for microbial utilization of formate.

Key points

Natural and artificial design pathways of formate-assimilation was summarized.

Recent progresses in different hosts and approaches of using one-carbon compounds was reviewed.

Metabolic engineering and synthetic biology methods to improve formate utilization were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal AS, Zhai Y, Hill D, Sridhar N (2011a) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. J ChemSusChem 4(9)

  • Agarwal AS, Zhai Y, Hill D, Sridhar N (2011b) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4(9):1301–1310. https://doi.org/10.1002/cssc.201100220

    Article  CAS  PubMed  Google Scholar 

  • Albert J, Wölfel R, Bösmann A, Wasserscheid P (2012) Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy Environ Sci 5(7):7956–7962

    Article  CAS  Google Scholar 

  • Albert J, Lüders D, Bösmann A, Guldi DM, Wasserscheid P (2014) Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chem (16):226–237

  • Anthony C (1982) The biochemistry of methylotrophs: C. Anthony. Academic Press, London

    Google Scholar 

  • Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, Barenholz U, Zelcbuch L, Amram S, Wides A, Tepper N, Davidi D, Bar-On Y, Bareia T, Wernick DG, Shani I, Malitsky S, Jona G, Bar-Even A, Milo R (2016) Sugar synthesis from CO2 in Escherichia coli. Cell 166(1):115–125

  • Arren BE, Elad N, Ron M (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63(6):2325–2342

    Article  Google Scholar 

  • Attwood MM, Harder W (2006) Formate assimilation by Hyphomicrobium X. FEMS Microbiol Lett 3(2):111–114

    Article  Google Scholar 

  • Bang J, Lee SY (2018a) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A 115(40):E9271–e9279. https://doi.org/10.1073/pnas.1810386115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang J, Lee SY (2018b) Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A 115(40):E9271–E9279. https://doi.org/10.1073/pnas.1810386115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Even A (2016) Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55(28):3851–3863. https://doi.org/10.1021/acs.biochem.6b00495

    Article  CAS  PubMed  Google Scholar 

  • Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci U S A 107(19):8889–8894

    Article  CAS  Google Scholar 

  • Bar-Even A, Flamholz A, Noor E, Milo R (2012) Thermodynamic constraints shape the structure of carbon fixation pathways. Biochim Biophys Acta 1817(9):1646–1659

    Article  CAS  Google Scholar 

  • Bar-Even A, Noor E, Flamholz A, Milo R (2013a) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta 1827(8-9):1039–1047

    Article  CAS  Google Scholar 

  • Bar-Even A, Noor E, Flamholz A, Milo R (2013b) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta Bioenerg 1827(8-9):1039–1047

    Article  CAS  Google Scholar 

  • Bélanger L, Figueira MM, Bourque D, Morel L, Béland M, Laramée L, Groleau D, Míguez CB (2004) Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation. J FEMS Microbiol Lett 2:2

    Google Scholar 

  • Bogorad IW, Chen C-T, Theisen MK, Wu T-Y, Schlenz AR, Lam AT, Liao JC (2014) Building carbon–carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci U S A 111(45):15928–15933

    Article  CAS  Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future - biorefinery production of chemicals from renewable carbon. CLEAN Soil Air Water 36(8):641–647

    Article  CAS  Google Scholar 

  • Buckel, W., Thauer, R.K(2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na^+ translocating ferredoxin oxidation. J Biochim Biophys Acta

    Book  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63(1):477–499

    Article  CAS  Google Scholar 

  • Cotton CA, Claassens NJ, Benito-Vaquerizo S, Bar-Even A (2019) Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol 62:168–180. https://doi.org/10.1016/j.copbio.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  • D’Ari L, Rabinowitz JC (1991) Purification, characterization, cloning, and amino acid sequence of the bifunctional enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase from Escherichia coli. J Biol Chem 266(35):23953–23958

    PubMed  Google Scholar 

  • Devin T, Whipple P, Kenis JA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1:3451–3458

    Article  Google Scholar 

  • Doring V, Darii E, Yishai O, Bar-Even A, Bouzon M (2018) Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution. ACS Synth Biol 7(9):2029–2036. https://doi.org/10.1021/acssynbio.8b00167

    Article  CAS  PubMed  Google Scholar 

  • Drake HL, Küsel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York, pp 354–420

    Google Scholar 

  • Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128. https://doi.org/10.1196/annals.1419.016

    Article  CAS  PubMed  Google Scholar 

  • Enthaler S (2010) Carbon dioxide - the hydrogen-storage material of the future? ChemSusChem 1(10):801–804

    Article  Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sust Energ Rev 13(6):1275–1287. https://doi.org/10.1016/j.rser.2008.08.014

    Article  CAS  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614. https://doi.org/10.1016/j.biotechadv.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  • Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, Hann S, Mattanovich D, Steiger MG (2020) The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol 38(2):210–216. https://doi.org/10.1038/s41587-019-0363-0

    Article  CAS  PubMed  Google Scholar 

  • Gleeson MA, Sudbery PE (1988) The methylotrophic yeasts. Yeast 4(1):1–15

    Article  CAS  Google Scholar 

  • Gleizer S, Ben-Nissan R, Bar-On YM, Antonovsky N, Noor E, Zohar Y, Jona G, Krieger E, Shamshoum M, Bar-Even A, Milo R (2019) Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179(6):1255. https://doi.org/10.1016/j.cell.2019.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg I, Rock JS, Ben-Bassat A, Mateles RI (1976) Bacterial yields on methanol, methylamine, formaldehyde, and formate. Biotechnol Bioeng 18(12):1657–1668

    Article  CAS  Google Scholar 

  • Gonzalez de la Cruz J, Machens F, Messerschmidt K, Bar-Even A (2019) Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth Biol 8(5):911–917. https://doi.org/10.1021/acssynbio.8b00464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunwald S, Mottet A, Grousseau E, Plassmeier JK, Sinskey AJ (2014) Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures. Microb Biotechnol 8(1):155–163

    Article  Google Scholar 

  • Hadadi N, Hafner J, Shajkofci A, Zisaki K, Hatzimanikatis V (2016) ATLAS of biochemistry a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth Biol 5(10):1155–1166

    Article  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJ (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18(3):200–206. https://doi.org/10.1016/j.copbio.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, James L (2018) A modified serine cycle in Escherichia coli converts methanol and CO2 to two-carbon compounds. Nat Commun 9(1)

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol 138(3):257–262

    Article  CAS  Google Scholar 

  • Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1(2):169–187

    Article  CAS  Google Scholar 

  • Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A (2020) Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol 16(5):538–545. https://doi.org/10.1038/s41589-020-0473-5

    Article  CAS  PubMed  Google Scholar 

  • Kopljar D, Inan A, Vindayer P, Wagner N (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44(10):1107–1116

    Article  CAS  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, Malati P, Huo Y-X, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596–1596

    Article  CAS  Google Scholar 

  • Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 2: ecophysiology and biochemistry. Springer, New York, pp 618–634

    Google Scholar 

  • Lidstrom ME, Wang J (2020) Giving E. coli a newfound appetite for formate. Nat Metab 2(3):219–220. https://doi.org/10.1038/s42255-020-0187-8

    Article  PubMed  Google Scholar 

  • Maaheimo H, Fiaux J, Çakar ZP, Bailey JE, Szyperski T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. FEBS J 268(8):2464–2479

    CAS  Google Scholar 

  • Martin A, Perez-Ramirez J, Javier L, Gaston O (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem (17):5114–5130

  • Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101(13):5013–5022

    Article  CAS  Google Scholar 

  • Pasternack LB, Laude DA Jr, Appling DR (1992) 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry 31(37):8713–8719

    Article  CAS  Google Scholar 

  • Peter N (1975) Formate as an inhibitor of cytochrome c oxidase. J Biochem Biophys Res Commun

  • Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125(1):129–136

    Article  CAS  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteomics 1784(12):1873–1898. https://doi.org/10.1016/j.bbapap.2008.08.012

    Article  CAS  Google Scholar 

  • Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27(2):107–115

    Article  CAS  Google Scholar 

  • Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33(8):1799–1813. https://doi.org/10.1016/j.biotechadv.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  • Shukla RS, Bhatt SD, Thorat RB, Jasra RV (2005) A novel effective hydration of carbon monoxide in liquid phase by a water-soluble ruthenium complex catalyst at moderate pressures in aqueous medium. Appl Catal A Gen 294(1):111–118. https://doi.org/10.1016/j.apcata.2005.07.034

    Article  CAS  Google Scholar 

  • Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, Shen BW, Eiben CB, Tran HM, Noor E, Gallaher JL, Bale J, Yoshikuni Y, Gelb MH, Keasling JD, Stoddard BL, Lidstrom ME, Baker D (2015) Computational protein design enables a novel one-carbon assimilation pathway. J Proc Natl Acad Sci 112(12):3704–3709. https://doi.org/10.1073/pnas.1500545112

    Article  CAS  Google Scholar 

  • Sorokin AB, Kudrik EV, Alvarez LX, Afanasiev P, Millet JMM, Bouchu D (2010) Oxidation of methane and ethylene in water at ambient conditions. Catal Today 157(1-4):149–154

    Article  CAS  Google Scholar 

  • Tashiro Y, Hirano S, Matson MM, Atsumi S, Kondo A (2018) Electrical-biological hybrid system for CO2 reduction. Metab Eng 47:211–218

    Article  CAS  Google Scholar 

  • Tollefson J (2008) Energy: not your father’s biofuels. Nature 451(7181):880–883

    Article  CAS  Google Scholar 

  • Trudeau DL, Edlich-Muth C, Zarzycki J, Scheffen M, Goldsmith M, Khersonsky O, Avizemer Z, Fleishman SJ, Cotton CAR, Erb TJ, Tawfik DS, Bar-Even A (2018) Design and in vitro realization of carbon-conserving photorespiration. Proc Natl Acad Sci U S A 115(49):E11455–E11464. https://doi.org/10.1073/pnas.1812605115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lidstrom ME (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4(5):e5584

    Article  Google Scholar 

  • Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115(23):12936–12973. https://doi.org/10.1021/acs.chemrev.5b00197

    Article  CAS  PubMed  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335(6066):308–313

    Article  CAS  Google Scholar 

  • Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Factories 4(1):25. https://doi.org/10.1186/1475-2859-4-25

    Article  CAS  Google Scholar 

  • Wölfel R, Taccardi N, Bösmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13(10):2759–2763

    Article  Google Scholar 

  • Yang X, Yuan Q, Luo H, Li F, Mao Y, Zhao X, Du J, Li P, Ju X, Zheng Y, Chen Y, Liu Y, Jiang H, Yao Y, Ma H, Ma Y (2019) Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng 56:142–153. https://doi.org/10.1016/j.ymben.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  • Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A (2016) The formate bio-economy. Curr Opin Chem Biol 35:1–9. https://doi.org/10.1016/j.cbpa.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  • Yishai O, Goldbach L, Tenenboim H, Lindner SN, Bar-Even A (2017) Engineered assimilation of exogenous and endogenous formate in Escherichia coli

  • Yishai O, Bouzon M, Dring V, Bar-Even A (2018) In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth Biol:acssynbio.8b00131

  • Zelcbuch L, Lindner SN, Zegman Y, Vainberg Slutskin I, Antonovsky N, Gleizer S, Milo R, Bar-Even A (2016) Pyruvate formate-lyase enables efficient growth of Escherichia coli on acetate and formate. Biochemistry 55(17):2423–2426. https://doi.org/10.1021/acs.biochem.6b00184

  • Zhang Y, Lin Z, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X (2014) Engineering of serine-deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb Cell Factories 13(1):172

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2018YFA0900200) and National Natural Science Foundation of China (NSFC-21621004, NSFC-21908239).

Author information

Authors and Affiliations

Authors

Contributions

Mao W and Yuan Qq studied, summed up the relative literatures, and wrote the manuscript. Qi Hg provided the frame and the research goal of article. Wang Zw and Ma Hw were responsible for proofreading and reviewed article. Chen T revised the manuscript and supervised this work. All authors read and approved the manuscript.

Corresponding author

Correspondence to Tao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Yuan, Q., Qi, H. et al. Recent progress in metabolic engineering of microbial formate assimilation. Appl Microbiol Biotechnol 104, 6905–6917 (2020). https://doi.org/10.1007/s00253-020-10725-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10725-6

Keywords

Navigation