Skip to main content
Log in

Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) is a cyclic β-amino acid that can be used for the synthesis of chiral materials and nonnatural peptides. The aim of this study was to accumulate DHHA by engineering Pseudomonas chlororaphis GP72, a nonpathogenic strain that produces phenazine-1-carboxylic acid and 2-hydroxyphenazine. First, the phzF deletion mutant DA1 was constructed, which produced 1.91 g/L DHHA. Moreover, rpeA and pykF were disrupted and then ppsA and tktA were co-expressed in strain DA1. The resulting strain DA4 increased DHHA concentration to 4.98 g/L, which is 2.6-fold than that of DA1. The effects of the addition of glucose, glycerol, l-tryptophan, and Fe3+on DHHA production were also investigated. Strain DA4 produced 7.48 g/L of DHHA in the culture medium in the presence of 12 g/L glucose and 3 mM Fe3+, which was 1.5-fold higher than the strain in the original fermentation conditions. These results indicate the potential of P. chlororaphis GP72 as a DHHA producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blankenfeldt W, Kuzin AP, Skarina T, Korniyenko Y, Tong L, Bayer P, Janning P, Thomashow LS, Mavrodi DV (2004) Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens. Proc Natl Acad Sci 101:16431–16436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts J, Esser S, Lorbach V, Al-Momani L, Muller MA, Franke D, Grondal C, Kurutsch A, Bujnicki R, Takors R, Raeven L, Wubbolts M, Bovenberg R, Nieger M, Schurmann M, Trachtmann N, Kozak S, Sprenger GA, Muller M (2011) Diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis. Angew Chem 123:7927–7932

    Article  Google Scholar 

  • Bunnage ME, Ganesh T, Masesane IB, Orton D, Steel PG (2003) Asymmetric synthesis of the putative structure of (−)-oryzoxymycin. Org Lett 5:239–242

    Article  CAS  PubMed  Google Scholar 

  • Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    Article  CAS  PubMed  Google Scholar 

  • Gosset G (2009) Production of aromatic compounds in bacteria. Curr Opin Biotechnol 20:651–658

    Article  CAS  PubMed  Google Scholar 

  • Gunther NW, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Thimm T, Droge M, Moore ER, Munch JC, Tebbe CC (1998) Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl Environ Microbiol 64:2652–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Chen MM, Wang W, Hu HB, Peng HS, Xu YQ, Zhang XH (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang H (2016) Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli. Curr Opin Biotechnol 42:1–6

    Article  PubMed  Google Scholar 

  • Juaristi E, Soloshonok V (2005) Enantioselective synthesis of beta-amino acids. Wiley, New York

    Book  Google Scholar 

  • Kanner D, Gerber N, Bartha R (1978) Pattern of phenazine pigment production by a strain of Pseudomonas aeruginosa. J Bacteriol 134:690–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:1

    Article  Google Scholar 

  • Liu H, He Y, Jiang H, Peng H, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Hu H, Wang W, Zhang X (2016) Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Microb Cell Factories 15:131

    Article  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • McCormick J, Reichenthal J, Hirsch U, Sjolander NO (1961) (+) trans-2, 3-dihydro-3-hydroxyanthranilic acid. A new amino acid produced by Streptomyces aureofaciens. J Am Chem Soc 83:4104–4105

    Article  CAS  Google Scholar 

  • McDonald M, Mavrodi DV, Thomashow LS, Floss HG (2001) Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc 123:9459–9460

    Article  CAS  PubMed  Google Scholar 

  • Meade TJ (1994) Synthesis of aromatic heterocyclic polymers from a biosynthetically prepared precursor. US Patent 5,340,913,1994

  • Nikel PI, Kim J, Lorenzo V (2014) Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 16:239–254

    Article  CAS  PubMed  Google Scholar 

  • Noda S, Shirai T, Oyama S, Kondo A (2016) Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab Eng 33:119–129

    Article  CAS  PubMed  Google Scholar 

  • Palko M, Kiss L, Fulop F (2005) Syntheses of hydroxylated cyclic β-amino acid derivatives. Curr Med Chem 12:3063–3083

    Article  CAS  PubMed  Google Scholar 

  • Parsons JF, Song F, Parsons L, Calabrese K, Eisenstein E, Ladner JE (2004) Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43:12427–12435

    Article  CAS  PubMed  Google Scholar 

  • Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Jonnalagadda S, Goonewardena L, Juturu V (2015) Metabolic engineering of a novel muconic acid biosynthesis pathway via 4-hydroxybenzoic acid in Escherichia coli. Appl Environ Microbiol 81:8037–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtark OY, Shaposhnikov A, Kravchenko L (2003) The production of antifungal metabolites by Pseudomonas chlororaphis grown on different nutrient sources. Microbiology 72:574–578

    Article  CAS  Google Scholar 

  • Slininger PJ, Jackson MA (1992) Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 37:388–392

    Article  CAS  Google Scholar 

  • Slininger P, Shea-Wilbur M (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 43:794–800

    Article  CAS  PubMed  Google Scholar 

  • Sprenger GA (2007) From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749

    Article  CAS  PubMed  Google Scholar 

  • van Rij ET, Wesselink M, Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

  • Wang D, Yu JM, Pierson LS, Pierson EA (2012) Differential regulation of phenazine biosynthesis by RpeA and RpeB in Pseudomonas chlororaphis 30-84. Microbiology 158:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Whistler CA, Pierson LS III (2003) Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. J Bacteriol 185:3718–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci 112:8266–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 21377082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Li, Y., Liu, K. et al. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 101, 6607–6613 (2017). https://doi.org/10.1007/s00253-017-8408-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8408-0

Keywords

Navigation