Skip to main content
Log in

Pongamia pinnata inoculated with Bradyrhizobium liaoningense PZHK1 shows potential for phytoremediation of mine tailings

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mine tailings contain high concentrations of metal contaminants and only little nutrients, making the tailings barren for decades after the mining has been terminated. Effective phytoremediation of mine tailings calls for deep-rooted, metal accumulating, and soil fertility increasing plants with tolerance against harsh environmental conditions. We assessed the potential of the biofuel leguminous tree Pongamia pinnata inoculated with plant growth promoting rhizobia to remediate iron–vanadium–titanium oxide (V–Ti magnetite) mine tailing soil by pot experiment and in situ remediation test. A metal tolerant rhizobia strain PZHK1 was isolated from the tailing soil and identified as Bradyrhizobium liaoningense by phylogenetic analysis. Inoculation with PZHK1 increased the growth of P. pinnata both in V–Ti magnetite mine tailings and in Ni-contaminated soil. Furthermore, inoculation increased the metal accumulation capacity and superoxide dismutase activity of P. pinnata. The concentrations of Ni accumulated by inoculated plants were higher than the hyperaccumulator threshold. Inoculated P. pinnata accumulated high concentration of Fe, far exceeding the upper limit (1000 mg kg−1) of Fe in plant tissue. In summary, P. pinnataB. liaoningense PZHK1 symbiosis showed potential to be applied as an effective phytoremediation technology for mine tailings and to produce biofuel feedstock on the marginal land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali M, Vajpayee P, Tripathi R, Rai U, Singh S, Singh S (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss.: role of antioxidant enzymes and antioxidant substances. B Environ Contam Tox 70(3):0462–0469

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arpiwi NL, Yan G, Barbour EL, Plummer JA, Watkin E (2013) Phenotypic and genotypic characterisation of root nodule bacteria nodulating Millettia pinnata (L.) Panigrahi, a biodiesel tree. Plant Soil 367(1–2):363–377

    Article  CAS  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152(3):559–568

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotech 8(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microb 82(6):1734–1744

    Article  CAS  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Polish J Environ Srud 15(3):375–382

    CAS  Google Scholar 

  • Crock J, Briggs P (2013) Inductively coupled plasma–atomic emission spectroscopy. Methods and Instrumentations: Results and Recent Developments 2:315

    Google Scholar 

  • Dary M, Chamber-Pérez M, Palomares A, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1):323–330

    Article  CAS  PubMed  Google Scholar 

  • Dordio AV, Duarte C, Barreiros M, Carvalho AP, Pinto A, da Costa CT (2009) Toxicity and removal efficiency of pharmaceutical metabolite clofibric acid by Typha spp.—potential use for phytoremediation? Bioresour Technol 100(3):1156–1161

    Article  CAS  PubMed  Google Scholar 

  • El Aafi N, Saidi N, Maltouf AF, Perez-Palacios P, Dary M, Brhada F, Pajuelo E (2015) Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L. Environ Sci Pollut R 22(6):4500–4512

    Article  CAS  Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338(4):241–254

    Article  PubMed  Google Scholar 

  • Jaffre T, Brooks R, Lee J, Reeves R (1976) Sebertia acumip: a nickel-accumulating plant from New Caledonia. Science 193:579–580

    Article  CAS  PubMed  Google Scholar 

  • Karmee SK, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol 96(13):1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Lee I-J (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lena QM, Gade NR (1997) Chemical fraction of cadmium, copper, nickel and zinc in contaminated soils. J Environ Qual 26:259–264

    Article  Google Scholar 

  • Li Z, Zhang G, Liu Y, Wan K, Zhang R, Chen F (2013) Soil nutrient assessment for urban ecosystems in Hubei, China. PLoS One 8:e75856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, He X, Chen W, Yuan F, Yan K, Tao D (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator—Lonicera japonica Thunb. J Hazard Mater 169(1):170–175

    Article  CAS  PubMed  Google Scholar 

  • Loukola-Ruskeeniemi K, Lahtinen H (2013) Multiphase evolution in the black-shale-hosted Ni–Cu–Zn–Co deposit at Talvivaara, Finland. Ore Geol Rev 52:85–99

    Article  Google Scholar 

  • Luo S-l, Chen L, Chen J-l, Xiao X, Xu T-y, Wan Y, Rao C, Liu C-b, Liu Y-t, Lai C (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85(7):1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotox Environ Safe 126:111–121

    Article  CAS  Google Scholar 

  • Moon-ai W, Niyomploy P, Boonsombat R, Sangvanich P, Karnchanatat A (2012) A superoxide dismutase purified from the rhizome of Curcuma aeruginosa Roxb. as inhibitor of nitric oxide production in the macrophage-like RAW 264.7 cell line. Appl Biochem Biotech 166(8):2138–2155

    Article  CAS  Google Scholar 

  • Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut R 20(2):1124–1134

    Article  Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Micr 59(8):1929–1934

    Article  Google Scholar 

  • Rasul A, Amalraj ELD, Kumar GP, Grover M, Venkateswarlu B (2012) Characterization of rhizobial isolates nodulating Millettia pinnata in India. FEMS Microbiol Lett 336(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensely BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Samuel S, Scott PT, Gresshoff PM (2013) Nodulation in the legume biofuel feedstock tree Pongamia pinnata. Agr Res 2(3):207–214

    Article  CAS  Google Scholar 

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1(1):2–11

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using symbiosis between leguminous plant and genetically engineered rhizobia. J Biothehnol 99:279–293

    CAS  Google Scholar 

  • Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Micr 44(4):846–849

    Article  CAS  Google Scholar 

  • Surange S, Wollum A II, Kumar N, Nautiyal CS (1997) Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43(9):891–894

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Bromfield E, Rodrigue N, Cloutier S, Tambong J (2012) Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2(12):2943–2961

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Vert G (2013) Iron transport in plants: better be safe than sorry. Curr Opin Plant Biol 16:322–327

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut R 16(7):765–794

    Article  CAS  Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005a) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Micr 55(2):569–575

    Article  CAS  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005b) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34(1):29–54

    Article  CAS  PubMed  Google Scholar 

  • Vose PB (1982) Iron nutrition in plants: a world overview. J Plant Nutr 5:233–249

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    Article  CAS  PubMed  Google Scholar 

  • Xu KW, Penttinen P, Chen YX, Chen Q, Zhang X (2013) Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid–hot river valley area in Panxi, Sichuan, China. Appl Microbiol Biot 97(2):783–793

    Article  CAS  Google Scholar 

  • Yanguo T, Xianguo T, Shijun N, Chengjiang Z, Zhengqi X (2003) Environmental geochemistry of heavy metal contaminants in soil and stream sediment in Panzhihua mining and smelting area, southwestern China. Chinese J Geochemistry 22(3):253–262

    Article  Google Scholar 

  • Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9(9):e106618

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Lin H, Deng L, Gong G, Jia Y, Xu X, Li T, Li Y, Chen H (2013) Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecol Eng 51:133–139

    Article  Google Scholar 

  • Zhou M-F, Robinson PT, Lesher CM, Keays RR, Zhang CJ, Malpas J (2005) Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V oxide deposits, Sichuan Province, SW China. J Petrol 46(11):2253–2280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (NO. 31300461), Doctoral Fund of Ministry of Education of China (NO. 20135103120003), and Research Foundation for the Introduction of Talent of Sichuan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiumei Yu or Qiang Chen.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Li, Y., Li, Y. et al. Pongamia pinnata inoculated with Bradyrhizobium liaoningense PZHK1 shows potential for phytoremediation of mine tailings. Appl Microbiol Biotechnol 101, 1739–1751 (2017). https://doi.org/10.1007/s00253-016-7996-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7996-4

Keywords

Navigation