Skip to main content
Log in

Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two new chiral membranes were prepared by modification of gold nanochannel membranes with d-penicillamine and N-acetyl-l-cysteine and were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. The effects of key factors such as the gold deposition time, the pH, and the concentration of sodium dihydrogen phosphate on the separation factor are discussed. Chiral resolution of amino acid enantiomers by the chiral membranes was investigated. The experimental results show that the d-penicillamine-modified membrane has good enantioselectivity toward tyrosine and phenylalanine enantiomers, whereas the N-acetyl-l-cysteine-modified membrane has good enantioselectivity toward tyrosine and tryptophan enantiomers. Furthermore, the chiral recognition mechanism was studied by density functional theory. The calculation results indicate that the basic chiral recognition system of d-penicillamine complexes involves only one chiral selector and one selected enantiomer, whereas that of N-acetyl-l-cysteine complexes involves two chiral selectors and one selected enantiomer. Finally, the NH3+ group of d-penicillamine is proved to play an important role in enhancing interactions between complexes and improving enantioselectivity.

Enantioselective interactions between amino acid enantiomers and sulfhydryl-compound-functionalized gold nanochannel membranes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CS:

Chiral selector

DFT:

Density functional theory

d-PA:

d-Penicillamine

GNM:

Gold nanochannel membrane

NALC:

N-Acetyl-l-cysteine

PBS:

Phosphate buffer solution

PCM:

Polycarbonate membrane

Phe:

Phenylalanine

SE:

Selected enantiomer

Trp:

Tryptophan

Tyr:

Tyrosine

References

  1. Meng C, Sheng Y, Chen Q, Tan H, Liu H. Exceptional chiral separation of amino acid modified graphene oxide membranes with high-flux. J Membr Sci. 2017;526:25–31.

    Article  CAS  Google Scholar 

  2. Uthoff F, Reimer A, Liese A, Gröger H. Enantioselective synthesis of chiral amines through enzymatic resolution under solvent-free conditions with malonate as reagent for acylation. Sustain Chem Pharm. 2017;5:42–5.

    Article  CAS  Google Scholar 

  3. Xiouras C, Fytopoulos A, Jordens J, Boudouvis AG, Van Gerven T, Stefanidis GD. Applications of ultrasound to chiral crystallization, resolution and deracemization. Ultrason Sonochem. 2018;43:184-192.

  4. Du Y, Luo L, Sun S, Jiang Z, Guo X. Enantioselective separation and determination of miconazole in rat plasma by chiral LC–MS/MS: application in a stereoselective pharmacokinetic study. Anal Bioanal Chem. 2017;409(27):6315–23.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes C, Tiritan ME, Pinto MM. Chiral separation in preparative scale: a brief overview of membranes as tools for enantiomeric separation. Symmetry. 2017;9(10):206.

    Article  CAS  Google Scholar 

  6. Kim J-S, Chun K-Y, Han C-S. Ion channel-based flexible temperature sensor with humidity insensitivity. Sens Actuators A. 2018;271:139–45.

    Article  CAS  Google Scholar 

  7. Si J, Wang H, Lu S, Xu X, Peng S, Xiang Y. In situ construction of interconnected ion transfer channels in anion-exchange membranes for fuel cell application. J Mater Chem A. 2017;5(8):4003–10.

    Article  CAS  Google Scholar 

  8. Zheng Y-B, Zhao S, Cao S-H, Cai S-L, Cai X-H, Li Y-Q. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale. 2017;9(1):433–9.

    Article  CAS  PubMed  Google Scholar 

  9. Boersma AJ, Bayley H. Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew Chem Int Ed. 2012;51(38):9606–9.

    Article  CAS  Google Scholar 

  10. X-f K, Cheley S, Guan X, Bayley H. Stochastic detection of enantiomers. J Am Chem Soc. 2006;128(33):10684–5.

    Article  CAS  Google Scholar 

  11. Han C, Hou X, Zhang H, Guo W, Li H, Jiang L. Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc. 2011;133(20):7644–7.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Li P, Xie L, Fan D, Huang S. β-cyclodextrin modified silica nanochannel membrane for chiral separation. J Membr Sci. 2014;453:12–7.

    Article  CAS  Google Scholar 

  13. Sun Z, Zhang F, Zhang X, Tian D, Jiang L, Li H. Chiral recognition of Arg based on label-free PET nanochannel. Chem Commun. 2015;51(23):4823–6.

    Article  CAS  Google Scholar 

  14. Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, et al. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun. 2015;51(15):3135–8.

    Article  CAS  Google Scholar 

  15. Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc. 2018;140(3):892–5.

    Article  CAS  PubMed  Google Scholar 

  16. Martell JD, Porter-Zasada LB, Forse AC, Siegelman RL, Gonzalez MI, Oktawiec J, et al. Enantioselective recognition of ammonium carbamates in a chiral metal–organic framework. J Am Chem Soc. 2017;139(44):16000–12.

    Article  CAS  PubMed  Google Scholar 

  17. Meinds TG, Pinxterhuis EB, Schuur B, de Vries JG, Feringa BL, Winkelman JG, et al. Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chem. 2017;19(18):4334–43.

    Article  Google Scholar 

  18. Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y, Roca-Sanjuan D, Antypov D, Campíns-Falcó P, et al. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc. 2017;139(12):4294–7.

    Article  CAS  PubMed  Google Scholar 

  19. Qian H-L, Yang C-X, Yan X-P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun. 2016;7:12104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weng X, Baez JE, Khiterer M, Hoe MY, Bao Z, Shea KJ. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew Chem Int Ed. 2015;54(38):11214–8.

    Article  CAS  Google Scholar 

  21. Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat Chem. 2014;6(5):429–34.

    Article  CAS  PubMed  Google Scholar 

  22. Cecilio Fonseca M, Santos da Silva RC, Nascimento CS, Bastos Borges K. Computational contribution to the electrophoretic enantiomer separation mechanism and migration order using modified β-cyclodextrins. Electrophoresis. 2017;38(15):1860–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yang X, Yan Z, Yu T, Du Y, Chen J, Liu Z, et al. Study of the enantioselectivity and recognition mechanism of chiral dual system based on chondroitin sulfate D in capillary electrophoresis. Anal Bioanal Chem. 2018:1–10.

  24. Hauser AW, Mardirossian N, Panetier JA, Head-Gordon M, Bell AT, Schwerdtfeger P. Functionalized graphene as a gatekeeper for chiral molecules: an alternative concept for chiral separation. Angew Chem Int Ed. 2014;53(37):9957–60.

    Article  CAS  Google Scholar 

  25. Šolomek TS, Powers-Riggs NE, Wu Y-L, Young RM, Krzyaniak MD, Horwitz NE, et al. Electron hopping and charge separation within a naphthalene-1,4:5,8-bis(dicarboximide) chiral covalent organic cage. J Am Chem Soc. 2017;139(9):3348–51.

    Article  CAS  PubMed  Google Scholar 

  26. Walekar LS, Pawar SP, Kondekar UR, Gunjal DB, Anbhule PV, Patil SR, et al. Spectroscopic investigation of interaction between carbon quantum dots and D-penicillamine capped gold nanoparticles. J Fluorescence. 2015;25(4):1085–93.

    Article  CAS  Google Scholar 

  27. Su H, Zheng Q, Li H. Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles. J Mater Chem. 2012;22(14):6546–8.

    Article  CAS  Google Scholar 

  28. Huang L, Li Y, Lin Q, Lou B, Chen Y. Enantioselective permeations of amino acids through l-proline-modified gold nanochannel membrane: an experimental and theoretical study. Amino Acids. 2018;50(11):1549–56.

    Article  CAS  PubMed  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, revision A.03. Wallingford: Gaussian; 2016.

    Google Scholar 

  30. Politzer P, Murray JS, Clark T. Mathematical modeling and physical reality in noncovalent interactions. J Mol Model. 2015;21(3):52.

    Article  CAS  PubMed  Google Scholar 

  31. Ho J, Ertem MZ. Calculating free energy changes in continuum solvation models. J Phys Chem B. 2016;120(7):1319–29.

    Article  CAS  PubMed  Google Scholar 

  32. López-Ramírez M, Arenas J, Otero J, Castro J. Surface-enhanced Raman scattering of d-penicillamine on silver colloids. J Raman Spectrosc. 2004;35(5):390–4.

    Article  CAS  Google Scholar 

  33. Noszál B, Visky D, Kraszni M. Population, acid–base, and redox properties of N-acetylcysteine conformers. J Med Chem. 2000;43(11):2176–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences Funding of Fujian Province (2017J01418, 2016J05040), the Fujian Provincial Youth Natural Fund Key Project (JZ160468), and the Science and Technology Project of Minjiang University (MYK17008, MYK17010). The authors thank the National Supercomputing Centre (Singapore) for the use of the high-performance computing service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Huang or Yiting Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Lin, Q., Li, Y. et al. Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes. Anal Bioanal Chem 411, 471–478 (2019). https://doi.org/10.1007/s00216-018-1464-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1464-1

Keywords

Navigation