Skip to main content
Log in

An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A facile chiral composite (3D-NGMWCNT@(S,S)-CIL) was prepared by integrating three-dimensional N-doped graphene oxide multi-walled carbon nanotubes (3D-NGMWCNT) and chiral ionic liquid ((S,S)-CIL) via electrodeposition. SEM, XRD, XPS, and electrochemical methods were used to characterize this composite and it revealed that the integrated 3D-NGMWCNT@(S,S)-CIL composite showed excellent electrochemical performance. Therefore, a 3D-NGMWCNT@(S,S)-CIL/GCE electrochemical sensor was constructed for enantioselective recognition of Trp enantiomers. The coefficient (IL/ID) of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor was 2.26 by differential pulse voltammograms (DPV), revealing that the synthesized 3D-NGMWCNT@(S,S)-CIL had a higher affinity for L-Trp than D-Trp. Moreover, UV-V is spectroscopy and a water contact angle test also proved this result. The 3D-NGMWCNT@(S,S)-CIL/GCE sensor had a detection limit of 0.024 μM and 0.055 μM, and sensitivity of 62.35 μA·mM−1·cm−2 and 30.40 μA·mM−1·cm−2 for L-Trp and D-Trp, respectively, with a linear response range of 0.01 to 5 mM. In addition, the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor showed excellent stability, and good reproducibility and was applied to detect L-Trp or D-Trp in real samples. The novel 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor provides an efficient and convenient strategy for chiral enantioselective recognition.

Graphical abstract

Schematic construction of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral electrochemical sensors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brooks WH, Guida WC, Daniel KG et al (2011) The significance of chirality in drug design and development. Curr Top Med Chem 11(7):760–770

    Article  CAS  Google Scholar 

  2. Wang Y, Zhu W, Qiu J et al (2015) Monitoring tryptophan metabolism after exposure to hexaconazole and the enantioselective metabolism of hexaconazole in rat hepatocytes in vitro. J Hazard Mater 295:9–16

    Article  CAS  Google Scholar 

  3. Oncescu V, Mancuso M, Erickson D (2014) Cholesterol testing on a smartphone. Lab Chip 14(4):759–763

    Article  CAS  Google Scholar 

  4. Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. Anal Methods 5(23):6557–6566

    Article  CAS  Google Scholar 

  5. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time of flight mass spectrometry. Cancer Res 69(11):4918–4925

    Article  CAS  Google Scholar 

  6. Zhu G, Kingsford O, Yi Y et al (2019) Review-recent advances in electrochemical chiral recognition. J Electrochem Soc 166(6):H205–H217

    Article  CAS  Google Scholar 

  7. Qian Z, Zhou J, Chen J, Wang C, Chen C, Feng H (2011) Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing. J Mater Chem 21(44):17635–17637

    Article  CAS  Google Scholar 

  8. Yang Y, Li W (2015) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of sunset yellow and tartrazine. Russ J Electrochem 51(3):218–226

    Article  CAS  Google Scholar 

  9. Ghozatloo A, Shariaty-Niasar M, Rashidi AM et al (2013) Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability. Int Commun Heat Mass 42(5):89–94

    Article  CAS  Google Scholar 

  10. Liang W, Rong Y, Fan L, Dong W, Dong Q, Yang C, Zhong Z, Dong C, Shuang S, Wong WY (2018) 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C 6(47):12822–12829

    Article  CAS  Google Scholar 

  11. Niu X, Yang X, Mo Z et al (2019) Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Microchim Acta 1868:557

    Article  Google Scholar 

  12. Wang R, Mo Z, Niu X, Yan M, Feng H, Zhang H, Guo R, Liu N (2019) A regular self-assembly micro-nano structure based on sodium carboxymethyl cellulose-reduced graphene oxide (rGO-EDA-CMC) for electrochemical chiral sensor. J Electrochem Soc 166(4):B173–B182

    Article  CAS  Google Scholar 

  13. Yang X, Niu X, Mo Z, Guo R, Liu N, Zhao P, Liu Z (2019) Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Microchim Acta 186:333

    Article  Google Scholar 

  14. Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181(5–6):501–509

    Article  CAS  Google Scholar 

  15. Guo L, Zhang Q, Huang Y, Han Q, Wang Y, Fu Y (2013) The application of thionine–graphene nanocomposite in chiral sensing for tryptophan enantiomers. Bioelectrochemistry 94:87–93

    Article  CAS  Google Scholar 

  16. Zou J, Chen X, Zhao G et al (2019) A novel electrochemical chiral interface based on the synergistic effect of polysaccharides for the recognition of tyrosine enantiomers. Talanta 195:628–637

    Article  CAS  Google Scholar 

  17. Sun Z, Lia X, Zhu G et al (2018) Supramolecular interaction facilitated block copolymer assembly and preparation of self-organized scaffold for chiral selective transport. Polymer 156:240–249

    Article  CAS  Google Scholar 

  18. Guo J, Wei X, Lian H, Li L, Sun X, Liu B (2020) Urchin-like chiral metal-organic framework/reduced graphene oxide nanocomposite for enantioselective discrimination of d/l-tryptophan. ACS Appl Nano Mater 3(4):3675–3683

    Article  CAS  Google Scholar 

  19. Kwak K, Kumar Senthil S, Pyo K et al (2014) Ionic liquid of a gold nanocluster: a versatile matrix for electrochemical biosensors. ACS Nano 8(1):671–679

    Article  CAS  Google Scholar 

  20. Atta NF, Galal A, Ahmed YM et al (2019) Highly conductive crown ether/ionic liquid crystal-carbon nanotubes composite based electrochemical sensor for chiral recognition of tyrosine enantiomers. J Electrochem Soc 166(8):623–630

    Article  Google Scholar 

  21. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  22. Wu D, Zhou Y, Cai P, Shen S, Pan Y (2015) Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids. J Chromatogr A 1395:65–72

    Article  CAS  Google Scholar 

  23. Selvaraj P, Raju CV, Sandu H et al (2020) Electrochemical chiral recognition of naproxen using L-cysteine/reduced graphene oxide modified glassy carbon electrode. Anal Bioanal Chem Res 7(1):1–15

    CAS  Google Scholar 

  24. Chen S, Duan J, Jaroniec M, Qiao SZ (2013) Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew Chem Int Edit 52(51):13567–13570

    Article  CAS  Google Scholar 

  25. You B, Wang L, Yao L, Yang J (2013) Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun 49(44):5016–5018

    Article  CAS  Google Scholar 

  26. Yang Y, Kong N, Wang H et al (2017) Electrochemical evidences of chiral molecule recognition using L/D-cysteine modified gold electrodes. Electrochim Acta 237:22–28

    Article  CAS  Google Scholar 

  27. Parveen RK (2013) Theory for staircase voltammetry and linear scan voltammetry on fractal electrodes: emergence of anomalous Randles-Sevcĭk behavior. Electrochim Acta 111:223–233

    Article  CAS  Google Scholar 

  28. Kuntz I, Gasparro F, Johnston M et al (1968) Molecular interactions and the Benesi-Hildebrand equation. J Am Chem Soc 90(18):4778–4781

    Article  CAS  Google Scholar 

  29. Wu D, Tan W, Yu Y et al (2018) A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition. Anal Chim Acta 144(2):543–549

    Google Scholar 

  30. Xie M, Xia B, Li Y et al (2016) Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ Sci 9(5):1687–1695

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (21861034; 51262027); and the Natural Science Foundation of Gansu Province (18JR3RA094); the Key Research and Development Project of Gansu Province (20YF3GA022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nijuan Liu or Zunli Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Liu, J., Niu, X. et al. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Microchim Acta 188, 163 (2021). https://doi.org/10.1007/s00604-021-04818-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04818-w

Keywords

Navigation