Skip to main content
Log in

Enantioselective permeations of amino acids through l-proline-modified gold nanochannel membrane: an experimental and theoretical study

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Proline-modified gold nanochannel membrane (l-Pro-GNM) was prepared and applied for the enantioselective permeations of amino acid enantiomers including tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe). Experimental results show that l-Pro-GNM has enantioselectivities for Tyr and Phe enantiomers. Furthermore, the chiral recognition mechanism was studied by density functional theory (DFT) and reduced density gradient (RDG). DFT computational results illustrate that the fundamental chiral recognition system contains two chiral selectors and one selectand, which can be used to evaluate the enantioselective efficiencies of other chiral compounds and the enantioselective ability of other potential amino acid-modified GNM. Finally, graphs obtained by RDG using Multiwfn show helpful visual interactions between the chiral selector and selectand. Results indicate that the electrostatic interaction and hydrogen bonding are responsible for the binding of the chiral selector and selectand, and the larger binding energy shows larger van der Waals interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CS:

Chiral selector

DFT:

Density functional theory

GNM:

Gold nanochannel membrane

l-Pro:

l-Proline

l-Pro-GNM:

l-Pro modified gold nanochannel membrane

PBS:

Phosphate buffer solution

PCM:

Polycarbonate membrane

Phe:

Phenylalanine

RDG:

Reduced density gradient

RSD:

Relative standard deviation

SA:

Selectand

SEM:

Scanning electron microscope

SMD:

Solvation model density

Trp:

Tryptophan

Tyr:

Tyrosine

XPS:

X-ray photoelectron spectroscopy

References

  • Barage SH, Deobagkar DD, Baladhye VB (2018) Characterization of structural and functional role of selenocysteine in selenoprotein H and its impact on DNA binding. Amino Acids 50:593–607

    Article  CAS  PubMed  Google Scholar 

  • Boersma AJ, Bayley H (2012) Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew Chem Int Ed 51:9606–9609

    Article  CAS  Google Scholar 

  • Bruździak P, Panuszko A, Kaczkowska E, Piotrowski B, Daghir A, Demkowicz S, Stangret J (2018) Taurine as a water structure breaker and protein stabilizer. Amino Acids 50:125–140

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Noel R, Liu J, Strachan DM, Thallapally PK, Cooper AI (2014) Separation of rare gases and chiral molecules by sensitive binding in porous organic cages. Nat Mater 13:954–960

    Article  CAS  PubMed  Google Scholar 

  • Chun K-Y, Choi W, Roh S-C, Han C-S (2015) Patchable, flexible heat-sensing hybrid ionic gate nanochannel modified with a wax-composite. Nanoscale 7:12427–12434

    Article  CAS  PubMed  Google Scholar 

  • Clemens JB, Kibar O, Chachisvilis M (2015) A molecular propeller effect for chiral separation and analysis. Nat Commun 6:7868

    Article  CAS  PubMed  Google Scholar 

  • Dhanavade MJ, Sonawane KD (2014) Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques. Amino Acids 46:1853–1866

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Zhang Y, Duan X, Zhu X, Sun H, Xu J (2017) Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: mechanism and model of chiral recognition. Anal Chem 89:9695–9702

    Article  CAS  PubMed  Google Scholar 

  • Fernández I, Sánchez A, Díez P, Martínez-Ruiz P, Di Pierro P, Porta R, Villalonga R, Pingarrón JM (2014) Nanochannel-based electrochemical assay for transglutaminase activity. Chem Commun 50:13356–13358

    Article  CAS  Google Scholar 

  • Fonseca MC, Silva RCSD, Nascimento CS Jr, Borges KB (2017) Computational contribution to the electrophoretic enantiomer separation mechanism and migration order using modified β-cyclodextrins. Electrophoresis 38:1860–1868

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, revision A.03. Gaussian Inc, Wallingford

    Google Scholar 

  • Han C, Hou X, Zhang H, Guo W, Li H, Jiang L (2011a) Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc 133:7644–7647

    Article  CAS  PubMed  Google Scholar 

  • Han J, E. Sorochinsky A, Ono T, A. Soloshonok V (2011b) Biomimetic transamination-a metal-free alternative to the reductive amination. Application for generalized preparation of fluorine-containing amines and amino acids. Curr Org Synth 8:281–294

    Article  CAS  Google Scholar 

  • Han X, Huang J, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140:892–895

    Article  CAS  PubMed  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo J, Kwon HJ, Jeon H, Kim B, Kim SJ, Lim G (2014) Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications. Nanoscale 6:9681–9688

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sheng C, Yin Z, Shen J, Li R, Peng B (2007) Immunoreaction-based separation of antibodies using gold nanotubes membrane. J Membr Sci 305:257–262

    Article  CAS  Google Scholar 

  • Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X-F, Cheley S, Guan X, Bayley H (2006) Stochastic detection of enantiomers. J Am Chem Soc 128:10684–10685

    Article  CAS  PubMed  Google Scholar 

  • Kim J-Y, Kang JS, Shin J, Kim J, Han S-J, Park J, Min Y-S, Ko MJ, Sung Y-E (2015) Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications. Nanoscale 7:8368–8377

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li P, Xie L, Fan D, Huang S (2014) β-Cyclodextrin modified silica nanochannel membrane for chiral separation. J Mem Sci 453:12–17

    Article  CAS  Google Scholar 

  • Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  • Martell JD, Porter-Zasada LB, Forse AC, Siegelman RL, Gonzalez MI, Oktawiec J, RunčEvski TE, Xu J, Srebro-Hooper M, Milner PJ (2017) Enantioselective recognition of ammonium carbamates in a chiral metal–organic framework. J Am Chem Soc 139:16000–16012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinds TG, Pinxterhuis EB, Schuur B, De Vries JG, Feringa BL, Winkelman JG, Yue J, Heeres HJ (2017) Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chem 19:4334–4343

    Article  Google Scholar 

  • Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y, Roca-Sanjuan D, Antypov D, Campíns-Falcó P, Rosseinsky MJ, Marti-Gastaldo C (2017) Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139:4294–4297

    Article  CAS  PubMed  Google Scholar 

  • Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  CAS  PubMed  Google Scholar 

  • Qian H-L, Yang C-X, Yan X-P (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7:12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh S, Zhao Y, Fong H, Menkhaus TJ (2017) Nanofiber multilayer membranes with tailored nanochannels prepared by molecular layer-by-layer assembly for high throughput separation. J Mater Chem A 5:4616–4628

    Article  CAS  Google Scholar 

  • Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K (2014) Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat Chem 6:429–434

    Article  CAS  PubMed  Google Scholar 

  • Si J, Wang H, Lu S, Xu X, Peng S, Xiang Y (2017) In situ construction of interconnected ion transfer channels in anion-exchange membranes for fuel cell application. J Mater Chem A 5:4003–4010

    Article  CAS  Google Scholar 

  • Šolomek T, Powers-Riggs NE, Wu Y-L, Young RM, Krzyaniak MD, Horwitz NE, Wasielewski MR (2017) Electron hopping and charge separation within a naphthalene-1,4,5,8-bis(dicarboximide) chiral covalent organic cage. J Am Chem Soc 139:3348–3351

    Article  CAS  PubMed  Google Scholar 

  • Sorochinsky AE, Katagiri T, Ono T, Wzorek A, Aceña JL, Soloshonok VA (2013) Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of α-CF3-containing secondary alcohols. Chirality 25:365–368

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Zhang F, Zhang X, Tian D, Jiang L, Li H (2015) Chiral recognition of Arg based on label-free PET nanochannel. Chem Commun 51:4823–4826

    Article  CAS  Google Scholar 

  • Ueki H, Yasumoto M, Soloshonok VA (2010) Rational application of self-disproportionation of enantiomers via sublimation—a novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry 21:1396–1400

    Article  CAS  Google Scholar 

  • Wen L, Tian Y, Ma J, Zhai J, Jiang L (2012) Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. PCCP 14:4027–4042

    Article  CAS  PubMed  Google Scholar 

  • Wen L, Tian Y, Guo Y, Ma J, Liu W, Jiang L (2013) Conversion of light to electricity by photoinduced reversible pH changes and biomimetic nanofluidic channels. Adv Funct Mater 23:2887–2893

    Article  CAS  Google Scholar 

  • Weng X, Baez JE, Khiterer M, Hoe MY, Bao Z, Shea KJ (2015) Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew Chem Int Ed 54:11214–11218

    Article  CAS  Google Scholar 

  • Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, Hou G, Li P, Tian Y, Jiang L (2015) Chiral recognition of l-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun 51:3135–3138

    Article  CAS  Google Scholar 

  • Xie Q, Xin F, Park HG, Duan C (2016) Ion transport in graphene nanofluidic channels. Nanoscale 8:19527–19535

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Zhao L, Liu K, Guo F, Chen Z, Liu W (2018) Enantiomeric characterization of herbicide lactofen: enantioseparation, absolute configuration assignment and enantioselective activity and toxicity. Chemosphere 193:351–357

    Article  CAS  PubMed  Google Scholar 

  • Yoosefian M, Etminan N (2018) Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein. Amino Acids 50:653–661

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang B, Wang W (2016) Biochemical sensing by nanofluidic crystal in a confined space. Lab Chip 16:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-B, Zhao S, Cao S-H, Cai S-L, Cai X-H, Li Y-Q (2017) A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale 9:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhong T-S, Yin Z-F, Liu Y, Huang S-S (2015) Chiral separation and identification of d,l-histidine based on nanochannels membrane coupling with surface enhanced raman scattering spectroscopy. Chin J Anal Chem 43:1695–1700

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by the National Nature Sciences Funding of China (21405075), Natural Sciences Funding of Fujian Province (2017J01418, 2016J05040), Fujian Provincial Youth Natural Fund Key Project (JZ160468) and Science and technology project of Minjiang University (MYK17008, MYK17010). We also acknowledge the use of High-Performance Computing (HPC) service of National Supercomputing Centre (Singapore) in carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors and they have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yiting Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors. This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.

Additional information

Handling Editor: V. Soloshonok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, Y., Lin, Q. et al. Enantioselective permeations of amino acids through l-proline-modified gold nanochannel membrane: an experimental and theoretical study. Amino Acids 50, 1549–1556 (2018). https://doi.org/10.1007/s00726-018-2629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2629-0

Keywords

Navigation