Skip to main content
Log in

The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the Cauchy theory for a multi-species mixture, where the different species can have different masses, in a perturbative setting on the three dimensional torus. The ultimate aim of this work is to obtain the existence, uniqueness and exponential trend to equilibrium of solutions to the multi-species Boltzmann equation in \({L^1_vL^\infty_x(m)}\), where \({m\sim (1+ |v|^k)}\) is a polynomial weight. We prove the existence of a spectral gap for the linear multi-species Boltzmann operator allowing different masses, and then we establish a semigroup property thanks to a new explicit coercive estimate for the Boltzmann operator. Then we develop an \({L^2-L^\infty}\) theory à la Guo for the linear perturbed equation. Finally, we combine the latter results with a decomposition of the multi-species Boltzmann equation in order to deal with the full equation. We emphasize that dealing with different masses induces a loss of symmetry in the Boltzmann operator which prevents the direct adaptation of standard mono-species methods (for example Carleman representation, Povzner inequality). Of important note is the fact that all methods used and developed in this work are constructive. Moreover, they do not require any Sobolev regularity and the \({L^1_vL^\infty_x}\) framework is dealt with for any \({k > k_0}\), recovering the optimal physical threshold of finite energy \({k_0=2}\) in the particular case of a multi-species hard spheres mixture with the same masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranger C., Mouhot C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoamericana 21(3), 819–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobylev A.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5–6), 1183–1214 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bobylev A., Gamba I., Panferov V.: Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions. J. Stat. Phys. 116(5–6), 1651–1682 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bobylëv A.V.: The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225(6), 1041–1044 (1975)

    ADS  MathSciNet  Google Scholar 

  5. Bobylëv, A.V.: The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules. In: Mathematical Physics Reviews, Vol. 7, vol. 7 of Soviet Sci. Rev. Sect. C Math. Phys. Rev. Harwood Academic Publishers, Chur, pp. 111–233, 1988

  6. Boudin L., Grec B., Pavi M., Salvarani F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boudin L., Grec B., Salvarani F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136(1), 79–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Briant, M.: Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Preprint (2015)

  9. Briant M.: From the Boltzmann equation to the incompressible Navier– Stokes equations on the torus: a quantitative error estimate. J. Differ. Equ. 259(11), 6072–6141 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. Publ. Sci. Inst. Mittag-Leffler, vol. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957

  11. Cercignani C.: The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  12. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  13. Daus, E.S., Jüngel, A.Y., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multi-species Boltzmann system. Preprint (2015)

  14. Desvillettes L., Monaco R., Salvarani F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24(2), 219–236 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Esposito R., Guo Y., Kim C., Marra R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, Providence, 1998

  17. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2013

  18. Gamba I.M., Panferov V., Villani C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194(1), 253–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, pp. 205–294. Springer-Verlag, Berlin, 1958

  20. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’ UNESCO, Paris, 1962), Vol. I., pp. 26–59. Academic Press, New York, 1963

  21. Grad, H.: Asymptotic equivalence of the Navier– Stokes and nonlinear Boltzmann equations. In: Proc. Sympos. Appl. Math., Vol. XVII, pp. 154–183. Amer. Math. Soc., Providence, RI, 1965

  22. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. Preprint (2013)

  23. Guo Y.: The Vlasov– Poisson– Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995 (Reprint of the 1980 edition)

  28. Lanford, O.E., III: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974). Lecture Notes in Phys., vol. 38, pp. 1–111. Springer, Berlin, 1975

  29. Mischler S., Wennberg B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4), 467–501 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mouhot C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Equ. 31(7–9), 1321–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mouhot C., Neumann L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Povzner A.J.: On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.) 58(100), 65–86 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Pulvirenti M., Saffirio C., Simonella S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 1450001, 64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ukai, S., Yang, T.: Mathematical Theory of the Boltzmann Equation. Lecture Notes Series, no. 8. Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 2006

  36. Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  37. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam, 2002

  38. Yu H.: Global classical solutions of the Boltzmann equation near Maxwellians. Acta Math. Sci. Ser. B Engl. Ed. 26(3), 491–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Briant.

Additional information

Communicated by P.-L. Lions

The first author was partly supported by the 150th Anniversary Postdoctoral Mobility Grant of the London Mathematical Society and the Division of Applied Mathematics at Brown University.

The second author acknowledges partial support from the Austrian Science Fund (FWF), Grants P24304, P27352, and W1245, and the Austrian-French Program of the Austrian Exchange Service (ÖAD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briant, M., Daus, E.S. The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium. Arch Rational Mech Anal 222, 1367–1443 (2016). https://doi.org/10.1007/s00205-016-1023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1023-x

Navigation