Skip to main content
Log in

Decay and Continuity of the Boltzmann Equation in Bounded Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Boundaries occur naturally in kinetic equations, and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: in-flow, bounce-back reflection, specular reflection and diffuse reflection. We establish exponential decay in the L norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set at the boundary. Our contribution is based on a new L 2 decay theory and its interplay with delicate L decay analysis for the linearized Boltzmann equation in the presence of many repeated interactions with the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkeryd L.: On the strong L 1 trend to equilibrium for the Boltzmann equation’. Stud. Appl. Math. 87, 283–288 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Arkeryd L., Cercignani C.: A global existence theorem for the initial boundary value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Rational Mech. Anal. 125, 271–288 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  3. Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Stability of the laminar solution of the Boltzmann equation for the Benard problem. Preprint 2007

  4. Arkeryd L., Esposito R., Pulvirenti M.: The Boltzmann equation for weakly inhomogeneous data. Comm. Math. Phys. 111(3), 393–407 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Arkeryd L., Heintz A.: On the solvability and asymptotics of the Boltzmann equation in irregular domains. Comm. Partial Differ. Equ. 22(11–12), 2129–2152 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beals R., Protopopescu V.: Abstract time-depedendent transport equations. J. Math. Anal. Appl. 212, 370–405 (1987)

    Article  MathSciNet  Google Scholar 

  7. Cercignani C.: The Boltzmann Equation and Its Application. Springer, Berlin (1988)

    Google Scholar 

  8. Cercignani C.: Equilibrium States and the trend to equlibrium in a gas according to the Boltzmann equation. Rend. Mat. Appl. 10, 77–95 (1990)

    MATH  MathSciNet  Google Scholar 

  9. Cercignani C.: On the initial-boundary value problem for the Boltzmann equation. Arch. Ration. Mech. Anal. 116, 307–315 (1992)

    Article  MathSciNet  Google Scholar 

  10. Cannoe R., Cercignani C.: A trace theorem in kinetic theory. Appl. Math. Lett. 4, 63–67 (1991)

    Article  Google Scholar 

  11. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    MATH  Google Scholar 

  12. Chernov N., Markarian R.: Chaotic Billiards. AMS, Providence (2006)

    MATH  Google Scholar 

  13. Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1988)

    Google Scholar 

  14. Desvillettes L.: Convergence to equilibrium in large time for Boltzmann and BGK equations. Arch. Ration. Mech. Anal. 110, 73–91 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Diperna R., Lions P.-L.: On the Cauchy problem for the Boltzmann equation. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  Google Scholar 

  17. Diperna R., Lions P.-L.: Global weak solution of Vlasov-Maxwell systems. Comm. Pure Appl. Math. 42, 729–757 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Esposito, L., Guo, Y., Marra, R.: Phase transition of a Vlasov–Boltzamann system. Preprint 2009

  19. Guo Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guo Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Guo Y.: Singular solutions of the Vlasov-Maxwell system on a half line. Arch. Ration Mech. Anal. 131(3), 241–304 (1995)

    Article  MATH  Google Scholar 

  22. Guo Y.: Regularity for the Vlasov equations in a half-space. Indiana Univ. Math. J. 43(1), 255–320 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guo, Y., Jang, J., Jiang, N.: Acoustic limit of the Boltzmann equation with optimal scaling. Comm. Pure Appl. Math. (in press)

  24. Glassey R.: The Cauchy Problems in Kinetic Theory. SIAM, Philadelphia (1996)

    Google Scholar 

  25. Glassey R., Strauss W.A.: Asymptotic stability of the relativistic Maxwellian. Publ. Res. Inst. Math. Sci. 29(2), 301–347 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Guo Y., Strauss W.A.: Instability of periodic BGK equilibria. Comm. Pure Appl. Math. 48(8), 861–894 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, vol. XII, pp. 205–294. Springer, Berlin, 1958

  28. Grad, H.: Asymptotic theory of the Boltzmann equation. II. Rarefied gas dynamics. In: Proceedings of the 3rd international Symposium, pp. 26–59, Paris, 1962

  29. Guiraud J.P.: An H-theorem for a gas of rigid spheres in a bounded domain. In: Pichon, G. (eds) Theories cinetique classique et relativistes, pp. 29–58. CNRS, Paris (1975)

    Google Scholar 

  30. Hamdache K.: Initial boundary value problems for Boltzmann equation. Global existence of week solutions. Arch. Ration. Mech. Anal. 119, 309–353 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Hwang H.-J.: Regularity for the Vlasov–Poisson system in a convex domain. SIAM J. Math. Anal. 36(1), 121–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hwang, H.-J., Velazquez, J.: Global existence for the Vlasov–Poisson system in bounded domain. Preprint 2007

  33. Liu T.-P., Yu S.-H.: Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm. Pure Appl. Math. 60(3), 295–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liu T.-P., Yu S.-H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. (N.S.) 1(1), 1–78 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Comm. Pure Appl. Math. 57(12), 1543–1608 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Maslova N.B.: Nonlinear Evolution Equations, Kinetic Approach. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  37. Mischler S.: On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 210, 447–466 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Masmoudi N., Saint-Raymond L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Comm. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shizuta Y.: On the classical solutions of the Boltzmann equation. Comm. Pure Appl. Math. 36, 705–754 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Shizuta Y., Asano K.: Global solutions of the Boltzmann equation in a bounded convex domain. Proc. Jpn. Acad. 53A, 3–5 (1977)

    MathSciNet  Google Scholar 

  41. Strain R., Guo Y.: Exponential decay for soft potentials near Maxwellians. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tabachnikov, S., Billiards, S.M.F. (1995)

  43. Ukai, S.: Solutions of the Boltzmann equation. In: Pattern and Waves-Qualitative Analysis of Nonlinear Differential Equations, pp. 37–96, 1986

  44. Ukai, S.: Private communications

  45. Ukai S., Asano K.: On the initial boundary value problem of the linearized Boltzmann equation in an exterior domain. Proc. Jpn. Acad. 56, 12–17 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. Villani, C.: Hypocoercivity. Memoir of AMS (in press)

  47. Vidav I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yang T., Zhao H.-J.: A half-space problem for the Boltzmann equation with specular reflection boundary condition. Comm. Math. Phys. 255(3), 683–726 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y. Decay and Continuity of the Boltzmann Equation in Bounded Domains. Arch Rational Mech Anal 197, 713–809 (2010). https://doi.org/10.1007/s00205-009-0285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0285-y

Keywords

Navigation