Skip to main content
Log in

Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the diffusion asymptotics of the Boltzmann equation for gaseous mixtures, in the perturbative regime around a local Maxwellian vector whose fluid quantities solve a flux-incompressible Maxwell–Stefan system. Our framework is the torus and we consider hard-potential collision kernels with angular cutoff. As opposed to existing results about hydrodynamic limits in the mono-species case, the local Maxwellian we study here is not a local equilibrium of the mixture due to cross-interactions. By means of a hypocoercive formalism and introducing a suitable modified Sobolev norm, we build a Cauchy theory which is uniform with respect to the Knudsen number \(\varepsilon \). In this way, we shall prove that the Maxwell–Stefan system is stable for the Boltzmann multi-species equation, ensuring a rigorous derivation in the vanishing limit \(\varepsilon \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baranger, C., Bisi, M., Brull, S., Desvillettes, L.: On the Chapman–Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinet. Relat. Models 11(4), 821–858 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoam. 21(3), 819–841 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46 5, 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Ukai, S.: The classical incompressible Navier–Stokes limit of the Boltzmann equation. Math. Models Methods Appl. Sci. 1(2), 235–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bastea, S., Esposito, R., Lebowitz, J.L., Marra, R.: Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations. J. Stat. Phys. 101, 1087–1136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianca, C., Dogbe, C.: Recovering Navier–Stokes equations from asymptotic limits of the Boltzmann gas mixture equation. Commun. Theor. Phys. (Beijing) 65(5), 553–562 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bisi, M., Desvillettes, L.: Formal passage from kinetic theory to incompressible Navier–Stokes equations for a mixture of gases. ESAIM Math. Model. Numer. Anal. 48(4), 1171–1197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondesan, A.: Asymptotique diffusive de l’équation de Boltzmann pour les mélanges gazeux, étude mathématique et numérique. Université De Paris, Thése de doctorat (2019)

  10. Bondesan, A., Boudin, L., Briant, M., Grec, B.: Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium Maxwell distributions. Commun. Pure Appl. Anal. 19, 2549–2573 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bondesan, A., Briant, M.: Perturbative Cauchy theory for a flux-incompressible Maxwell–Stefan system. Submitted for publication (2019)

  12. Boudin, L., Götz, D., Grec, B.Diffusion, models of multicomponent mixtures in the lung. In CEMRACS,: Mathematical modelling in medicine, vol. 30 of ESAIM Proc. EDP Sci. Les Ulis 2010, 90–103 (2009)

  13. Boudin, L., Grec, B., Pavan, V.: The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections. Nonlinear Anal. 159, 40–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boudin, L., Grec, B., Salvarani, F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136(1), 79–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Briant, M.: From the Boltzmann equation to the incompressible Navier–Stokes equations on the torus: a quantitative error estimate. J. Differ. Equ. 259(11), 6072–6141 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Briant, M.: Stability of global equilibrium for the multi-species Boltzmann equation in \(L^\infty \) settings. Discrete Contin. Dyn. Syst. 36(12), 6669–6688 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Briant, M., Daus, E.S.: The Boltzmann equation for a multi-species mixture close to global equilibrium. Arch. Ration. Mech. Anal. 222(3), 1367–1443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Briant, M., Grec, B.: Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling. Submitted for publication (2020)

  19. Brull, S.: Problem of evaporation-condensation for a two component gas in the slab. Kinet. Relat. Models 1, 185–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brull, S.: The Boltzmann equation for a two component gas in the slab for different molecular masses. Adv. Differ. Equ. 15, 1103–1124 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Caflisch, R.E.: The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33(5), 651–666 (1980)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Cercignani, C.: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Book  MATH  Google Scholar 

  23. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)

    Book  MATH  Google Scholar 

  24. Chang, H.: Multicomponent diffusion in the lung. Fed. Proc. 39(10), 2759–2764 (1980)

    Google Scholar 

  25. Daus, E.S., Jüngel, A., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multispecies Boltzmann system. SIAM J. Math. Anal. 48(1), 538–568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier–Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. 42(8), 1189–1214 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24(2), 219–236 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. (9) 54, 125–156 (1975)

    MathSciNet  MATH  Google Scholar 

  29. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, (2013)

  30. Golse, F.: Fluid dynamic limits of the kinetic theory of gases. In: Bernardin, C., Gonçalves, P. (eds.) From Particle Systems to Partial Differential Equations. Springer Proceedings in Mathematics & Statistics, vol. 75, pp. 3–91. Springer, Berlin, Heidelberg (2014)

  31. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Golse, F., Saint-Raymond, L.: The incompressible Navier–Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grad, H.: Principles of the kinetic theory of Ggses. In: Flügge, S. (ed.) Thermodynamik der Gase / Thermodynamics of Gases. Handbuch der Physik / Encyclopedia of Physics, vol. 3 / 12, pp. 205–294. Springer, Berlin, Heidelberg (1958)

    Chapter  Google Scholar 

  34. Grad, H.: Asymptotic equivalence of the Navier–Stokes and nonlinear Boltzmann equations. In: Proc. Sympos. Appl. Math., vol. XVII. Amer. Math. Soc., Providence R.I., US, pp. 154–183 (1965)

  35. Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hutridurga, H., Salvarani, F.: Maxwell–Stefan diffusion asymptotics for gas mixtures in non-isothermal setting. Nonlinear Anal. 159, 285–297 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hutridurga, H., Salvarani, F.: On the Maxwell–Stefan diffusion limit for a mixture of monatomic gases. Math. Meth. in Appl. Sci. 40(3), 803–813 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Illner, R., Pulvirenti, M.: A derivation of the BBGKY-hierarchy for hard sphere particle systems. Transp. Theory Stat. Phys. 16(7), 997–1012 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result. Commun. Math. Phys. 121 1, 143–146 (1989)

    Article  MATH  ADS  Google Scholar 

  40. Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der Mathematischen Wissenschaften, vol. 132. Springer, New York (1966)

    Book  Google Scholar 

  41. Lanford, III, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974). Springer, Berlin, 1975, pp. 1–111. Lecture Notes in Phys., Vol. 38

  42. Levermore, C.D., Masmoudi, N.: From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 196(3), 753–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Maxwell, J.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    ADS  Google Scholar 

  44. Mouhot, C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Equ. 31(7–9), 1321–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mouhot, C., Neumann, L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26, 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  48. Stefan, J.: Über das gleichgewicht und die bewegung, insbesondere die diffusion von gasgemengen. Akad. Wiss. Wien 63, 63–124 (1871)

    Google Scholar 

  49. Thiriet, M., Douguet, D., Bonnet, J.-C., Canonne, C., Hatzfeld, C.: The effect on gas mixing of a He-O2 mixture in chronic obstructive lung diseases. Bull. Eur. Physiopathol. Respir. 15(5), 1053–1068 (1979)

    Google Scholar 

  50. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305 North-Holland, Amsterdam (2002)

  51. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009), iv+141

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bondesan.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrea Bondesan has been partially funded by Université Sorbonne Paris Cité, in the framework of the “Investissements d’Avenir”, convention ANR-11-IDEX-0005. The authors would like to acknowledge the Laboratoire MAP5 at Université de Paris where this work was achieved..

Appendix A. Explicit Carleman Representation of the Operator \(\mathbf{K }^{\varepsilon }\)

Appendix A. Explicit Carleman Representation of the Operator \(\mathbf{K }^{\varepsilon }\)

We here provide the basic tools that are used in Lemma 3.4 to prove the regularizing effect of \(\partial ^{\beta }_v\partial ^{\alpha }_x\mathbf{K }^{\varepsilon }\). Looking at the work of Mouhot and Neumann [45] in the mono-species context, the authors recover this property by transferring to the kernel of the compact operator K all the derivatives, which are then computed and estimated explicitly. This analysis is possible mainly because the kernel of K has itself an explicit expression. Ideally, one may want to apply a similar strategy in our multi-species framework, but this would require knowing the structure of the kernel of \(\mathbf{K }^{\varepsilon }\).

In this appendix we derive an explicit expression of the kernel of \(\mathbf{K }^{\varepsilon }\), following the methods of [17] where a Carleman representation of the Boltzmann multi-species operator was obtained. In particular, we shall rework the pointwise estimates established by the authors, replacing them by a series of pointwise equalities where all the technical computations are made fully explicit.

Let us begin by recalling that \(\mathbf{K }^{\varepsilon }=(K^{\varepsilon }_1,\ldots ,K^{\varepsilon }_N)\) can be written componentwise, for any \(\mathbf{f }\in L^2\big ({\mathbb {R}}^3,\pmb {\mu }^{-\frac{1}{2}}\big )\), under the kernel form [17, Lemma 5.1]

$$\begin{aligned} \begin{aligned}&K^{\varepsilon }_i(\mathbf{f })(v) \\&\quad =\sum _{j=1}^N C_{ij} \int _{{\mathbb {R}}^3}\left( \frac{1}{|v-v_*|}\int _{\widetilde{E}^{ij}_{v v_*}}\frac{B_{ij}\left( v-V(w,v_*),\frac{v_*-w}{|w-v_*|}\right) }{|w-v_*|}M^{\varepsilon }_i(w)\ \text {d}\widetilde{E}(w)\right) f^*_j\text {d}v_* \\&\qquad + \sum _{j=1}^N C_{ji} \int _{{\mathbb {R}}^3}\left( \frac{1}{|v-v_*|}\int _{E^{ij}_{v v_*}}\frac{B_{ij}\left( v-V(v_*,w),\frac{w-v_*}{|w-v_*|}\right) }{|w-v_*|}M^{\varepsilon }_j(w)\ \text {d}E(w)\right) f_i^*\text {d}v_* \\&\qquad - \sum _{j=1}^N\int _{{\mathbb {R}}^3}\left( \int _{{\mathbb {S}}^2}B_{ij}(\left| v-v_*\right| ,\cos \theta )M^{\varepsilon }_i\text {d}\sigma \right) f^*_j\text {d}v_*, \end{aligned} \end{aligned}$$

where we have defined \(V(w,v_*)=v_*+m_i m_j^{-1}w-m_i m_j^{-1}v\) and called \(C_{ij},C_{ji}>0\) some explicit constants which only depend on the masses \(m_i, m_j\). Moreover, we have denoted by \(\text {d}E\) the Lebesgue measure on the hyperplane \(E_{v v_*}^{ij}\), orthogonal to \(v-v_*\) and passing through

$$\begin{aligned} V_E(v,v_*)=\frac{m_i+m_j}{2 m_j}v-\frac{m_i-m_j}{2m_j}v_*, \end{aligned}$$

and by \(\text {d}\widetilde{E}\) the Lebesgue measure on the space \(\widetilde{E}_{v v_*}^{ij}\) which corresponds to the hyperplane \(E_{v v_*}^{ij}\) whenever \(m_i=m_j\), and to the sphere of radius \(R=R(v,v_*)\) and centre \(O=O(v,v_*)\)

$$\begin{aligned} R = \frac{m_j}{|m_i-m_j|}|v-v_*|, \qquad O = \frac{m_i}{m_i-m_j}v-\frac{m_j}{m_i-m_j}v_*, \end{aligned}$$

whenever \(m_i\ne m_j\).

We can thus define, for any \(1\leqslant i,j\leqslant N\), the kernels

$$\begin{aligned} \begin{aligned} \kappa _{ij}^{(1)}(v,v_*)&= \frac{C_{ij}}{|v-v_*|}\int _{\widetilde{E}^{ij}_{v v_*}}\frac{B_{ij}\left( v-V(w,v_*),\frac{v_*-w}{|w-v_*|}\right) }{|w-v_*|}M^{\varepsilon }_i(w)\ \text {d}\widetilde{E}(w), \\ \kappa _{ij}^{(2)}(v,v_*)&= \frac{C_{ji}}{|v-v_*|}\int _{E^{ij}_{v v_*}}\frac{B_{ij}\left( v-V(v_*,w),\frac{w-v_*}{|w-v_*|}\right) }{|w-v_*|}M^{\varepsilon }_j(w)\ \text {d}E(w), \\ \kappa _{ij}^{(3)}(v,v_*)&= \int _{{\mathbb {S}}^2}B_{ij}(\left| v-v_*\right| ,\cos \theta )M^{\varepsilon }_i\text {d}\sigma , \end{aligned} \end{aligned}$$

where we have dropped the parameter \(\varepsilon \) in order to enlighten our notations. In this way, each \(K^{\varepsilon }_i\) can be rewritten as

$$\begin{aligned} K^{\varepsilon }_i(\mathbf{f })(v)=\sum _{j=1}^N\left\{ \int _{{\mathbb {R}}^3}\kappa _{ij}^{(1)}(v,v_*)f^*_j\text {d}v_* + \int _{{\mathbb {R}}^3}\kappa _{ij}^{(2)}(v,v_*)f^*_i\text {d}v_* - \int _{{\mathbb {R}}^3}\kappa _{ij}^{(3)}(v,v_*)f^*_j\text {d}v_*\right\} . \end{aligned}$$

Let us now fix two indices \(i,j\in \left\{ 1,\ldots ,N\right\} \) and study each of the three kernels separately.

1.1 A.1. Explicit form of \(\kappa _{ij}^{(1)}\)

The first kernel is easy to make explicit, since the domain of integration \(\widetilde{E}_{v v_*}^{ij}\) is a sphere. We thus perform an initial change of variables consisting on a translation of its centre and a dilation of its radius, in order to end up on \({\mathbb {S}}^2\). In this new coordinate system, \(\kappa _{ij}^{(1)}\) writes

$$\begin{aligned} \kappa _{ij}^{(1)}(v,v_*)=\frac{C_{ij}m_j^2}{(m_i -m_j)^2}\left| v-v_*\right| \int _{{\mathbb {S}}^2}\frac{b_{ij}(v,v_*,\omega )}{|R\omega +O-v_*|^{1-\gamma }}M^{\varepsilon }_i(R\omega +O)\ \text {d}\omega , \end{aligned}$$

with \(b_{ij}\) being given by

$$\begin{aligned} b_{ij}(v,v_*,\omega ) = b_{ij}\left( \frac{\big (v-V(R\omega +O,v_*)\big )\cdot \big (v_*-\left( R\omega +O\right) \big )}{\left| v-V(R\omega +O,v_*)\right| \left| R\omega +O-v_*\right| }\right) . \end{aligned}$$

Direct computations then show that

$$\begin{aligned} \kappa _{ij}^{(1)}(v,v_*)= & {} C_{ij}c_i |v-v_*|^{\gamma }\int _{{\mathbb {S}}^2}\frac{b_{ij}\left( \omega \cdot \frac{v-v_*}{|v-v_*|}\right) }{\left| \frac{m_i^2+m_j^2}{(m_i-m_j)^2}+\frac{2m_i m_j}{(m_i-m_j)|m_i-m_j|}\frac{(v-v_*)\cdot \omega }{|v-v_*|}\right| ^{1-\gamma }} \nonumber \\&\times e^{-\frac{m_i}{2}\left| R\omega +O\right| ^2+\varepsilon m_i (R\omega +O)\cdot u_i-\varepsilon ^2\frac{m_i}{2}|u_i |^2}\ \text {d}\omega , \end{aligned}$$
(A.1)

where we have renamed for simplicity

$$\begin{aligned} C_{ij}=\frac{C_{ij} m_j^2}{(m_i -m_j)^2}\left( \frac{m_i}{2\pi }\right) ^{3/2}, \end{aligned}$$

the angular part has the form

$$\begin{aligned} b_{ij}\left( \omega \cdot \frac{v-v_*}{|v-v_*|}\right) =b_{ij}\left( \frac{\frac{2m_im_j}{(m_i-m_j)^2}+\frac{m_i^2+m_j^2}{(m_i-m_j)|m_i-m_j|}\frac{(v-v_*)\cdot \omega }{|v-v_*|}}{\frac{m_i^2+m_j^2}{(m_i-m_j)^2}+\frac{2m_im_j}{(m_i-m_j)|m_i-m_j|}\frac{(v-v_*)\cdot \omega }{|v-v_*|}}\right) , \end{aligned}$$

and the exponent explicitly reads

$$\begin{aligned} \begin{aligned} \left| R\omega +O\right| ^2 =&\ \frac{m_j^2}{(m_i-m_j)^2}|v-v_*|^2 +\frac{2 m_j|v-v_*|}{(m_i-m_j)|m_i-m_j|}(m_i v-m_j v_*)\cdot \omega \\&\ + \frac{1}{(m_i-m_j)^2}|m_i v-m_j v_*|^2, \\ (R\omega +O)\cdot u_i =&\ \frac{m_j}{|m_i-m_j|}|v-v_*| \omega \cdot u_i + \frac{(m_i v-m_j v_*)\cdot u_i}{m_i-m_j}. \end{aligned} \end{aligned}$$

This concludes the study for \(\kappa _{ij}^{(1)}\).

1.2 A.2. Explicit form of \(\kappa _{ij}^{(2)}\)

Recovering the explicit expression of \(\kappa _{ij}^{(2)}\) is more subtle. We recall that the domain of integration \(E_{v v_*}^{ij}\) is the hyperplane orthogonal to \(v-v_*\) and passing through

$$\begin{aligned} V_E(v,v_*)=\frac{m_i+m_j}{2 m_j}v-\frac{m_i-m_j}{2m_j}v_*. \end{aligned}$$

Let us consider \(\omega \in \big (\text {Span}(v-v_*)\big )^\perp \) and let us make the initial change of variables \(w=V_E(v,v_*)+\omega \) which translates \(E_{v v_*}^{ij}\) to the parallel hyperplane passing through the origin of \({\mathbb {R}}^3\). Thus \(\kappa _{ij}^{(2)}\) transforms into

$$\begin{aligned} \kappa _{ij}^{(2)}(v,v_*) = \frac{C_{ji}}{|v-v_*|}\int _{(v-v_*)^\perp }\frac{b_{ij}(v,v_*,\omega )}{|v-V(v_*,V_E(v,v_*)+\omega )|^{1-\gamma }}M^{\varepsilon }_j(V_E(v,v_*)+\omega )\ \text {d}\omega , \end{aligned}$$

where the angular part writes

$$\begin{aligned} b_{ij}(v,v_*,\omega )= b_{ij}\left( \frac{\big ( v-V(v_*,V_E(v,v_*)+\omega )\cdot \big (V_E(v,v_*)+\omega -v_*\big ) \big )}{\left| v-V(v_*,V_E(v,v_*)+\omega )\right| |V_E(v,v_*)+\omega -v_*|}\right) . \end{aligned}$$

The exponent of the Maxwellian can be computed as follows. We initially develop the square to get

$$\begin{aligned} \left| V_E(v,v_*)+\omega -\varepsilon u_j\right| ^2=\left| V_E(v,v_*)+\omega \right| ^2 -2\varepsilon \big (V_E(v,v_*)+\omega \big )\cdot u_j +\varepsilon ^2| u_j |^2. \end{aligned}$$

The first term can be rewritten as

$$\begin{aligned} \begin{aligned} \left| V_E(v,v_*)+\omega \right| ^2&= \left| \omega +\frac{1}{2}(v+v_*)\right| ^2 +\frac{m_i^2}{4m_j^2}|v-v_*|^2+\frac{m_i}{2m_j}\big (|v|^2-|v_*|^2\big ) \\&= \left| \omega +\frac{1}{2}V^\perp \right| ^2 +\frac{1}{4}\left| V^\parallel \right| ^2+\frac{m_i^2}{4m_j^2}|v-v_*|^2+\frac{m_i}{2m_j}\big (|v|^2-|v_*|^2\big ), \end{aligned} \end{aligned}$$

where we have decomposed \(v+v_*=V^\parallel + V^\perp \), with \(V^\parallel \) being the projection onto \(\text {Span}(v-v_*)\) and \(V^\perp \) being the orthogonal part. In the same way, the second term reads

$$\begin{aligned} \big (V_E(v,v_*)+\omega \big )\cdot u_j=\left( \frac{1}{2}V^\parallel +\frac{m_i}{2 m_j}(v-v_*)\right) \cdot u_j + \left( \frac{1}{2}V^\perp +\omega \right) \cdot u_j. \end{aligned}$$

Since by the definition of \(V^\parallel \)

$$\begin{aligned} \left| V^\parallel \right| ^2 =\frac{\big ((v+v_*)\cdot (v-v_*)\big )^2}{|v-v_*|^2}=\frac{\left| |v|^2-|v_*|^2\right| ^2}{|v-v_*|^2}, \end{aligned}$$

the kernel \(\kappa _{ij}^{(2)}\) becomes

$$\begin{aligned} \kappa _{ij}^{(2)}(v,v_*)={\mathcal {P}}_{ij}(v,v_*)\int _{(v-v_*)^\perp }b_{ij}(v,v_*,\omega )W_{ij}(v,v_*,\omega )M^{\varepsilon }_j\left( \omega +\frac{1}{2}V^\perp \right) \text {d}E(\omega ), \end{aligned}$$

where

$$\begin{aligned} {\mathcal {P}}_{ij}(v,v_*)= & {} \frac{C_{ji}}{|v-v_*|} e^{-\frac{m_i^2}{8m_j}|v-v_*|^2-\frac{m_j}{8}\frac{\left| |v|^2-|v_*|^2\right| ^2}{|v-v_*|^2}+\varepsilon \frac{m_i}{2}(v-v_*)\cdot u_j + \varepsilon \frac{m_j}{2}\frac{|v|^2-|v_*|^2}{|v-v_*|}\frac{(v-v_*)\cdot u_j}{|v-v_*|}}\sqrt{\frac{\mu _i}{\mu _i^*}}, \\ b_{ij}(v,v_*,\omega )= & {} b_{ij}\left( \frac{\left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 - |\omega |^2}{\left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 + |\omega |^2}\right) , \qquad \\ W_{ij}(v,v_*,\omega )= & {} \left( \left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 + |\omega |^2\right) ^{\frac{\gamma -1}{2}}. \end{aligned}$$

Finally, it remains to take care of the domain of integration which still depends on \((v,v_*)\). The idea is to transform the hyperplane defined by \((v-v_*)^\perp \) to end up on \({\mathbb {R}}^2\). Proceeding as in [44, Proposition 2.4], we first observe that the integral is even with respect to \(v-v_*\), since it only depends on its modulus. Thus, we focus on the set of relative velocities \(v-v_*\) such that the first coordinate is nonnegative. Call \(e_1\) the first unit vector of the corresponding orthonormal basis and, for any fixed \(\frac{v-v_*}{|v-v_*|}\), introduce the linear transformation

$$\begin{aligned} {\mathcal {L}}\left( \frac{v-v_*}{|v-v_*|},{\mathcal {X}}\right) =2\frac{\left( e_1+\frac{v-v_*}{|v-v_*|}\right) \cdot {\mathcal {X}}}{\left| e_1+\frac{v-v_*}{|v-v_*|}\right| ^2}\left( e_1+\frac{v-v_*}{|v-v_*|}\right) -{\mathcal {X}},\quad \forall {\mathcal {X}}\in {\mathbb {R}}^3, \end{aligned}$$

which corresponds to the specular reflection through the axis defined by \(e_1+\frac{v-v_*}{|v-v_*|}\). Now, \({\mathcal {L}}\) is a diffeomorphism from \(\left\{ {\mathcal {X}}=\left( 0,X\right) , X\in {\mathbb {R}}^2\right\} \) onto \((v-v_*)^\perp \), with unitary Jacobian matrix. Thus, we can use this linear transformation to pass from \((v-v_*)^\perp \) to \({\mathbb {R}}^2\) into the integral of \(\kappa _{ij}^{(2)}\), which can be finally explicitly written as

$$\begin{aligned}&\kappa _{ij}^{(2)}(v,v_*) \nonumber \\&\quad ={\mathcal {P}}_{ij}(v,v_*) \int _{{\mathbb {R}}^2}b_{ij}\left( \frac{\left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 - |X|^2}{\left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 + |X|^2}\right) \left( \left( \frac{m_i+m_j}{2m_j}\right) ^2 |v-v_*|^2 + |X|^2\right) ^{\frac{\gamma -1}{2}} \nonumber \\&\qquad \times M^{\varepsilon }_j\left( {\mathcal {L}}\left( \frac{v-v_*}{|v-v_*|},\left( 0,X+\frac{1}{2}\overline{X}\right) \right) \right) \text {d}X, \end{aligned}$$
(A.2)

where we have called \(\overline{X}\in {\mathbb {R}}^2\) the preimage of \(V^\perp \in (v-v_*)^\perp \) through the transformation \({\mathcal {L}}\), and we have used the straightforward identity

$$\begin{aligned} \left| {\mathcal {L}}\left( \frac{v-v_*}{|v-v_*|},(0,X)\right) \right| =|X|, \quad \forall X\in {\mathbb {R}}^2,\ \forall v,v_*\in {\mathbb {R}}^3. \end{aligned}$$

This concludes the study for \(\kappa _{ij}^{(2)}\).

1.3 A.3. Explicit form of \(\kappa _{ij}^{(3)}\)

The analysis of \(\kappa _{ij}^{(3)}\) is the easiest one, since it is already fully explicit. It simply reads

$$\begin{aligned} \kappa _{ij}^{(3)}(v,v_*) = \int _{{\mathbb {S}}^2} b_{ij}\left( \sigma \cdot \frac{v-v_*}{|v-v_*|}\right) |v-v_*|^\gamma M^{\varepsilon }_i(v)\text {d}\sigma . \end{aligned}$$

This concludes its study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondesan, A., Briant, M. Stability of the Maxwell–Stefan System in the Diffusion Asymptotics of the Boltzmann Multi-species Equation. Commun. Math. Phys. 382, 381–440 (2021). https://doi.org/10.1007/s00220-021-03976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03976-5

Navigation