Skip to main content
Log in

Microinertia and internal variables

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The description of microinertia in micromorphic continua is discussed from the point of view of non-equilibrium thermodynamics. In the framework of dual internal variables, the microinertia stems from a thermodynamic equation of state related to the internal variable, which has the properties similar to mechanical momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen A.C., Suhubi E.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597 (1967)

    Article  ADS  Google Scholar 

  4. Kestin J.: Internal variables in the local-equilibrium approximation. J. Non Equilib. Thermodyn. 18, 360 (1993)

    Article  ADS  MATH  Google Scholar 

  5. Maugin G.A., Muschik W.: Thermodynamics with internal variables. Part I. General concepts. J. Non Equilib. Thermodyn. 19, 217 (1994)

    ADS  MATH  Google Scholar 

  6. Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75(10–12), 723 (2006)

    Article  ADS  MATH  Google Scholar 

  7. Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non Equilib. Thermodyn. 33(3), 235 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Ván P.: Exploiting the second law in weakly non-local continuum physics. Mech. Eng. 49(1), 79 (2005)

    MathSciNet  Google Scholar 

  9. Ván P., Papenfuss C.: Thermodynamic consistency of third grade finite strain elasticity. Proc. Est. Acad. Sci. 59(2), 126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Groot S.R., Mazur P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  11. Maugin G.A.: Internal variables and dissipative structures. J. Non Equilib. Thermodyn. 15(2), 173 (1990)

    Article  ADS  Google Scholar 

  12. Rice J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19(6), 433 (1971)

    Article  ADS  MATH  Google Scholar 

  13. Lubliner J.: On the structure of the rate equations of materials with internal variables. Acta Mech. 17(1–2), 109 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sidoroff F.: Internal variables and phenomenological models for metals plasticity. Revue de physique appliquée 23(4), 649 (1988)

    Article  Google Scholar 

  15. Maugin G.A., Muschik W.: Thermodynamics with internal variables. Part II. Applications. J. Non Equilib. Thermodyn. 19, 250 (1994)

    ADS  MATH  Google Scholar 

  16. Houlsby G., Puzrin A.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16(9), 1017 (2000)

    Article  MATH  Google Scholar 

  17. Rahouadj R., Ganghoffer J.F., Cunat C.: A thermodynamic approach with internal variables using Lagrange formalism. Part I: general framework. Mech. Res. Commun. 30(2), 109 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers. Chapter 8: Theories with Internal Variables, pp. 215–236. Springer (2008)

  19. Horstemeyer M.F., Bammann D.J.: Historical review of internal state variable theory for inelasticity. Int. J. Plast. 26(9), 1310 (2010)

    Article  MATH  Google Scholar 

  20. Ván P.: Weakly nonlocal irreversible thermodynamics—the Ginzburg–Landau equation. Technische Mechanik 22(2), 104 (2002)

    ADS  Google Scholar 

  21. Callen H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    MATH  Google Scholar 

  22. Berezovski A., Engelbrecht J., Maugin G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229 (2011)

    Article  ADS  MATH  Google Scholar 

  23. Berezovski A., Engelbrecht J., Maugin G.A.: Thermoelasticity with dual internal variables. J. Thermal Stress. 34(5–6), 413 (2011)

    Article  MATH  Google Scholar 

  24. Rubí J., Casas-Vázquez J.: Thermodynamical aspects of micropolar fluids. A non-linear approach. J. Non Equilib. Thermodyn. 5(3), 155 (1980)

    Article  ADS  Google Scholar 

  25. Rubı J., Pérez-Madrid A.: Inertial effects in non-equilibrium thermodynamics. Physica A Stat. Mech. Appl. 264(3), 492 (1999)

    ADS  Google Scholar 

  26. Planck M.: Zur Dynamik bewegter Systeme. Sitzungsberichte der königlich Preussische Akademie der Wissenschaften pp. 542–570 (1907)

  27. Einstein A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4, 411 (1908)

    ADS  Google Scholar 

  28. Planck M.: Zur Dynamik bewegter Systeme. Annalen der Physik 331(6), 1 (1908)

    Article  ADS  MATH  Google Scholar 

  29. Blanuša, D.: Sur les paradoxes de la notion dénergie. Glasnik Mat.–Fiz. i Astr. Ser pp. 249–250 (1947)

  30. Ott H.: Lorentz-Transformation der Wärme und der temperatur. Zeitschrift für Physik 175(1), 70 (1963)

    Article  ADS  MATH  Google Scholar 

  31. Bíró, T.S., Ván, P.: About the temperature of moving bodies. EPL 89, 30001 (2010). ArXiv:0905.1650v1

  32. Ván P., Biró T.: First order and stable relativistic dissipative hydrodynamics. Physics Letters B 709(1), 106 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ván P.: Weakly nonlocal non-equilibrium thermodynamics–variational principles and Second Law. In: Soomere, T., Quak, E. (eds.) Applied Wave Mathematics, pp. 153–186. Springer, New York (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezovski, A., Ván, P. Microinertia and internal variables. Continuum Mech. Thermodyn. 28, 1027–1037 (2016). https://doi.org/10.1007/s00161-015-0453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0453-2

Keywords

Navigation