Skip to main content
Log in

Generalized thermomechanics with dual internal variables

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The formal structure of generalized continuum theories is recovered by means of the extension of canonical thermomechanics with dual weakly non-local internal variables. The canonical thermomechanics provides the best framework for such generalization. The Cosserat, micromorphic, and second gradient elasticity theory are considered as examples of the obtained formalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toupin R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  2. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)

    Google Scholar 

  3. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Capriz G.: Continua with Microstructure. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  5. Eringen A.C.: Microcontinuum Field Theories, vol. I. Springer, New York (1999)

    Google Scholar 

  6. Rice J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  7. Mandel J.P.: Thermodynamics and plasticity. In: Domingos, J.J., Nina, M.N.R., Whitelaw, J.H. (eds) Foundations of Continuum Thermodynamics, pp. 283–304. MacMillan, London (1974)

    Google Scholar 

  8. Kestin J.: Internal variables in the local-equilibrium approximation. J. Non-Equilib. Thermodyn. 18, 360–379 (1993)

    Article  MATH  Google Scholar 

  9. Maugin G.A., Muschik W.: Thermodynamics with internal variables. J. Non-Equilib. Thermodyn. 19, 217–249 (1994)

    Article  MATH  Google Scholar 

  10. Maugin G.A.: The Thermomechanics of Nonlinear Irreversible Behaviors. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  11. Houlsby G.T., Puzrin A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16, 1017–1047 (2000)

    Article  MATH  Google Scholar 

  12. Magnenet V., Rahouadj R., Ganghoffer J.-F., Cunat C.: Continuous symmetries and constitutive laws of dissipative materials within a thermodynamic framework of relaxation. Part I: formal aspects. Int. J. Plast. 23, 87–113 (2007)

    Article  MATH  Google Scholar 

  13. Maugin G.A.: On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech. 75, 723–738 (2006)

    Article  MATH  Google Scholar 

  14. Maugin G.A.: On canonical equations of continuum thermomechanics. Mech. Res. Commun. 33, 705–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)

    Article  MATH  Google Scholar 

  17. Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  18. Kienzler R., Herrmann G.: Mechanics in Material Space. Springer, Berlin (2000)

    MATH  Google Scholar 

  19. Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)

    Article  Google Scholar 

  20. Gurtin M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maugin G.A.: On the structure of the theory of polar elasticity. Phil. Trans. R. Soc. Lond. A 356, 1367–1395 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Forest, S.: Generalized continua. In: Buschow, K., Cahn, R., Flemings, M., Ilschner, B., Kramer, E., Mahajan, S. (eds.) Encyclopedia of Materials: Science and Technology. Updates, pp. 1–7. Elsevier, Oxford (2005)

  23. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  24. Aifantis E.C.: Update on a class of gradient theories. Mech. Mater. 35, 259–280 (2003)

    Article  Google Scholar 

  25. Engelbrecht J., Berezovski A., Pastrone F., Braun M.: Waves in microstructured materials and dispersion. Philos. Mag. 85, 4127–4141 (2005)

    Article  Google Scholar 

  26. Engelbrecht J., Cermelli P., Pastrone F.: Wave hierarchy in microstructured solids. In: Maugin, G. (eds) Geometry, Continua and Microstructure, pp. 99–111. Hermann Publ., Paris (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezovski, A., Engelbrecht, J. & Maugin, G.A. Generalized thermomechanics with dual internal variables. Arch Appl Mech 81, 229–240 (2011). https://doi.org/10.1007/s00419-010-0412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0412-0

Keywords

Navigation