Skip to main content

Synthesis and Applications of Nanofungicides: A Next-Generation Fungicide

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

With the increasing population, the pressure of enhancing food production and management of fungal diseases of food crops and fruits in agriculture sector needs urgent concern. Nanofungicides due to their vast physiochemical and functionalization properties could be easily applied for plant disease management. This chapter covers the different types of nanofungicide synthesis with mechanism. The chapter also gives comprehensive idea about fungal mycotoxins and its harmful effects on agricultural sector. Apart from it, this chapter also highlights the effects of nanoparticles (NPs) on mycotoxins produced by fungi and its mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarca ML, Bragulat MR, Castella G, Cabanes FJ (1994) Ochratoxin A production by strains of Aspergillus niger var. niger. Appl Environ Microbiol 60(7):2650–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abbas HK, Boyette CD (1992) Phytotoxicity of fumonisin B1 on weed and crop species. Weed Technol 1:548–552

    Google Scholar 

  • Adekunle AA, Bassir O (1997) The effects of aflatoxin B1 and G1 on the germination and leaf color of cowpea (Vigna sinensis). Mycopathol Mycol Appl 1997:1–2

    Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, San Diego

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra−/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Al-Othman MR, ARM AE, Mahmoud MA, Fifan SA, El-Shikh MM (2014) Application of silver nanoparticles as antifungal and antiaflatoxin B1 produced by Aspergillus flavus. Dig J Nanomater Bios 1(9):151–157

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:10.3389/fmicb.2016.01984

  • Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005) Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17(7):889–892

    Article  CAS  Google Scholar 

  • Bennett JW, Bentley R (1989) What’s in a name?-microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    Article  CAS  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39(6):1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Betina V (1989) Mycotoxins. Chemical, biological and environmental aspects. Elsevier, Amsterdam

    Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bragulat MR, Martínez E, Castellá G, Cabañes FJ (2008) Ochratoxin A and citrinin producing species of the genus Penicillium from feedstuffs. Int J Food Microbiol 126(1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Chain E, Florey HW, Jennings MA (1942) An antibacterial substance produced by Penicillium claviforme. Br J Exp Pathol 23(4):202

    CAS  PubMed Central  Google Scholar 

  • Chan Y, Don MM (2012) Characterization of Ag nanoparticles produced by white-rot fungi and its in vitro antimicrobial activities. Int Arab J Antimicrob Agents 2(3):1–8

    Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Ciegler A, Vesonder RF, Jackson LK (1977) Production and biological activity of patulin and citrinin from Penicillium expansum. Appl Environ Microbiol 33(4):1004–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan EV (1973) Effects of aflatoxin on seeding growth and ultrastructure in plants. Appl Microbiol 26(6):991–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J Nanomater 16(1):57

    Google Scholar 

  • Da Lozzo EJ, Mangrich AS, Rocha ME, de Oliveira MB, Carnieri EG (2002) Effects of citrinin on iron-redox cycle. Cell Biochem Funct 20(1):19–29

    Article  PubMed  Google Scholar 

  • Damodaran C, Kathirvel-Pandian S, Seeni S, Selvam R, Ganesan MG, Shanmugasundaram S (1975) Citrinin, a phytotoxin? Cell Mol Life Sci 31(12):1415–1417

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water. Hyg Manag 25(14):8192–8199

    CAS  Google Scholar 

  • Deepa K, Panda T (2014) Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol 14(5):3455–3463

    Article  CAS  PubMed  Google Scholar 

  • Dhekney S, Li A, Anaman M, Dutt M, Tattersall J, Gray D (2007) Genetic transformation of embryogenic cultures and recovery of transgenic plants in Vitis vinifera, Vitis rotundifolia and Vitis hybrids. Acta Hort 738:743–748

    Article  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Article  Google Scholar 

  • Ellis JR, McCalla TM (1973) Effects of patulin and method of application on growth stages of wheat. Appl Microbiol 25(4):562–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bio 2(3):243–247

    Article  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins – novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54(7):1806–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1):132–140

    Article  CAS  Google Scholar 

  • Gopinath K, Arumugam A (2014) Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Appl Nanosci 4(6):657–662

    Article  CAS  Google Scholar 

  • Gupta S, Sharma K, Sharma R (2012) Myconanotechnology and application of nanoparticles in biology. Recent Res Sci Technol 4(8):36–38

    CAS  Google Scholar 

  • Hasan HA (1999) Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability. Mycopathologia 148(3):149–155

    Article  CAS  PubMed  Google Scholar 

  • Hassan AA, Howayda ME, Mahmoud HH (2013) Effect of zinc oxide nanoparticles on the growth of mycotoxigenic mould. SCPT 1(4):66–74

    Google Scholar 

  • Hassan AA, Oraby NA, Mohamed AA, Mahmoud HH (2014) The possibility of using zinc oxide nanoparticles in controlling some fungal and bacterial strains isolated from buffaloes. Egypt J Appl Sci 29(3):58–83

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–152

    Article  CAS  PubMed  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AC, Raistrick H (1931) Studies in the Biochemistry of Micro-organisms. On the production and chemical constitution of a new yellow colouring matter, citrinin, produced from glucose by Penicillium citrinum. Trans Roy Soc (Lond) B 220:269–295

    Article  Google Scholar 

  • Horie Y (1995) Productivity of ochratoxin a of Aspergillus carbonarius in Aspergillus section Nigri. Nippon Kingakukai Kaiho 36:73–76

    CAS  Google Scholar 

  • Ismaiel AA, Papenbrock J (2014) The effects of patulin from Penicillium vulpinum on seedling growth, root tip ultrastructure and glutathione content of maize. Eur J Plant Pathol 139(3):497–509

    Article  CAS  Google Scholar 

  • Ismaiel AA, Papenbrock J (2014) The effects of patulin from Penicilllium vulpinum on seedling growth, root tip ultrastructure and glutathione content of maize. Eur J Plant Pathol 139:497–509

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 305–317

    Chapter  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413

    Article  CAS  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445

    Article  CAS  Google Scholar 

  • Lamprecht SC, Marasas WF, Alberts JF, Cawood ME, Gelderblom WC, Shephard GS, Thiel PG, Calitz FJ (1994) Phytotoxicity of fumonisins and TA-toxin to corn and tomato. Phytopathology 84(4):383–391

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Macías M, Ulloa M, Gamboa A, Mata R (2000) Phytotoxic compounds from the new coprophilous fungus Guanomyces polythrix. J Nat Prod 63(6):757–761

    Article  PubMed  Google Scholar 

  • Magro M, Moritz DE, Bonaiuto E, Baratella D, Terzo M, Jakubec P, Malina O, Čépe K, de Aragao GM, Zboril R, Vianello F (2016) Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. Food Chem 203:505–512

    Article  CAS  PubMed  Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25(4):989–1004

    Article  CAS  Google Scholar 

  • McLean M (1995) The phytotoxicity of selected mycotoxins on mature, germinating Zea mays embryos. Mycopathologia 132(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • McLean M, Watt MP, Berjak P, Dutton MF (1995) Aflatoxin B1-its effects on an in vitro plant system. Food Addit Contam 12(3):435–443

    Article  CAS  PubMed  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv 26(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Mouhamed AE, Hassan AA, Manal AH, El Hariri M, Refai M (2015) Effect of metal nanoparticles on the growth of Ochratoxigenic moulds and Ochratoxin A production isolated from food and feed. Int J Res Stud Biosci 3(9):1–14

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Nabawy GA, Hassan AA, Sayed El-Ahl RH, Refai MK (2014) Effect of metal nanoparticles in comparison with commercial antifungal feed additives on the growth of Aspergillus flavus and aflatoxin b1 production. J Glob Biosci 3:954–971

    Google Scholar 

  • Oberdürster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A: Math Phys Eng Sci 358(1775):2719–2740

    Article  Google Scholar 

  • Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29(2):153–161

    Article  PubMed  Google Scholar 

  • Perez-de-Luque A, Rubiales D, Marquina CI, Ibarra MR, De la Fuente JM (2008) Nanoparticles in agriculture, development of smart delivery systems for plant research. Nano-Spain, Braga

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  PubMed  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A, Rai MK, Bridge PD (2009) Myconanotechnology: a new and emerging science. Appl Mycol 14:258–2567

    Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4(1):1. –0

    Article  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  PubMed  Google Scholar 

  • Reiss J (1978) Effects of mycotoxins on higher plants, algae, fungi and bacteria. Mycotoxic Fungi Mycotoxins Mycotoxicoses 3:118–144

    Google Scholar 

  • Rheeder JP, Marasas WF, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68(5):2101–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard JL, Payne GA, Desjardin AE, Maragos C, Norred WP, Pestka JJ (2003) Mycotoxins, risks in plant, animal and human systems. In: CAST Task Force Report 139; Council for Agricultural Science and Technology: Ames, 101–103. 32

    Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Biostruct 5(4):887–895

    Google Scholar 

  • Samuel AT, Valentine IT (2014) Effect of total aflatoxin on the growth characteristics and chlorophyll level of sesame (Sesamum indicum L.) NY Sci J 7:8–13

    Google Scholar 

  • Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Saxena J, Sharma MM, Gupta S, Singh A (2014) Emerging role of fungi in nanoparticle synthesis and their applications. World J Pharm Sci 3:1586–1613

    Google Scholar 

  • Shah V, Dobiášová P, Baldrian P, Nerud F, Kumar A, Seal S (2010) Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. J Hazard Mater 178(1):1141–1145

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:1–8

    Google Scholar 

  • Sinha KK, Kumari P (1990) Some physiological abnormalities induced by aflatoxin B1 in mung seeds (Vigna radiata variety Pusa Baishakhi). Mycopathologia 110(2):77–79

    Article  CAS  Google Scholar 

  • Sinha KK, Sinha AK (1993) Effect of aflatoxin B1 on germination index and seedling growth in wheat varieties. Mycopathologia 123(3):165–169

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88(3):167–177

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international conference on production engineering, Tokyo, Part II, Japan Society of Precision Engineering. pp 18–23

    Google Scholar 

  • Thiel PG, Marasas WF, Sydenham EW, Shephard GS, Gelderblom WC, Nieuwenhuis JJ (1991) Survey of fumonisin production by Fusarium species. Appl Environ Microbiol 57(4):1089–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Merwe KJ, Steyn PS, Fourie L, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205(4976):1112–1113

    Article  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2006) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Violeta V, Catalin P, Constantin F, Monica A, Marius B (2011) Nanoparticles applications for improving the food safety and food processing. In: 7th international conference on materials science and engineering, Bramat, Brasov, vol 77, 24–26 Feb 2011

    Google Scholar 

  • Wang Y, Peng X, Xu W, Luo Y, Zhao W, Hao J, Liang Z, Zhang Y, Huang K (2011) Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. J Exp Bot 29:err447

    Google Scholar 

  • White AG, Truelove B (1972) The effects of aflatoxin B1, citrinin, and ochratoxin A on amino acid uptake and incorporation by cucumber. Can J Bot 50(12):2659–2664

    Article  CAS  Google Scholar 

  • Xu B, Jahic M, Blomsten G, Enfors SO (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl Microbiol Biotechnol 51(5):564–571

    Article  PubMed  Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicillium expansum. Afr J Microbiol Res 7(19):1917–1923

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge Prof. Aditya Shastri for providing us research facilities and the Bioinformatics Centre, Banasthali University, Rajasthan (India), for extensive use of computational facilities and also thankful to MHRD Department of Higher Education, Government of India, under the scheme of Establishment of Centre of Excellence for Training and Research in FAST (FAST 5-5/2014 TS VII) for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suphiya Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, S., Khan, S. (2017). Synthesis and Applications of Nanofungicides: A Next-Generation Fungicide. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_6

Download citation

Publish with us

Policies and ethics