Skip to main content

Advertisement

Log in

Myconanotechnology in agriculture: a perspective

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Myconanotechnology is an emerging field, where fungi can be harnessed for the synthesis of nanomaterials or nanostructures with desirable shape and size. Though myconanotechnology is in its infancy, potential applications provide exciting waves of transformation in agriculture and fascinate microbiologists and other researchers to contribute in providing incremental solutions through green chemistry approaches for advancing food security. In this article, we provide a brief overview of the research efforts on the mycogenic synthesis of nanoparticles with particular emphasis on mechanisms and potential applications in agriculture and allied sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya K, Chattopadhyay D, Patra S, Sarkar J, Saha S (2011) Mycosynthesis of silver nanoparticles and investigation of their antimicrobial activity. JoNSNEA 1(1):17–26

    Google Scholar 

  • Afreen RV, Ranganath E (2011) Synthesis of monodispersed silver nanoparticles by Rhizopus stolonifer and its antibacterial activity against MDR strains of Pseudomonas aeruginosa from burnt patients. Int J Environ Sci 1(7):1582–1592

    CAS  Google Scholar 

  • Aguilar-Méndez AM, Martín-martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sa′nchez-Espı′ndola E (2010) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13(6):2525–2532

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124(1):12108–12109

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Anandan S, Grieser F, Kumar AM (2008) Sonochemical synthesis of Au-Ag core-shell bimetallic nanoparticles. J Phys Chem C 112(1):15102–15105

    Article  CAS  Google Scholar 

  • Anitha TS, Palanivelu P (2011) Synthesis and structural characterization of polydisperse silver and multishaped gold nanoparticles using Fusarium oxysporum MTCC 284. Dig J Nanomater Bios 6(4):1587–1595

    Google Scholar 

  • Bakar NA, Salleh MM, Umar AA, Yahaya M (2011) The detection of pesticides in water using ZnCdSe quantum dot films. Adv Nat Sci Nanosci Nanotechnol 2(1):025011

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68(1):88–92

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589

    Article  CAS  Google Scholar 

  • Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963

    Article  CAS  Google Scholar 

  • Bao HF, Hao N, Yang YX, Zhao DY (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3(7):481–489

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Legashetty A, Rasab AH, Venkatraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Behari J (2010) Principles of nanoscience: an overview. Indian J Exp Biotechnol 48(10):1008–1019

    CAS  Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47(1):160–164

    Article  CAS  Google Scholar 

  • Bharde A, Rautray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kundu SC (2011) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204

    Article  CAS  Google Scholar 

  • Bigall NC, Eychmüller A (2010) Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos Trans R Soc London Ser A 368:1385–1404

    Article  CAS  Google Scholar 

  • Binupriya AR, Sathishkumarb M, Vijayaraghavanb K, Yuna S-I (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    Article  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179

    Article  CAS  Google Scholar 

  • Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora Crassa. Colloids Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37(2):105–108

    Article  CAS  Google Scholar 

  • Chen G-Q, Zou Z-J, Zeng G-M, Yan M, Fan J-Q, Chen A-W, Yang F, Zhang W-J, Wang L (2011) Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution. Chemosphere 83(9):1201–1207

    Article  CAS  Google Scholar 

  • Cheng Y, Liua Y, Huanga J, Lia K, Zhang W, Xiana Y, Jin L (2009) Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 77(4):1332–1336

    Article  CAS  Google Scholar 

  • Christou P, Mccabe DE, Swain WF (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 87:671–674

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  Google Scholar 

  • DeRosa MC, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  Google Scholar 

  • Drummen GPC (2010) Quantum dots—from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11:154–163

    Article  CAS  Google Scholar 

  • Du L, Xian L, Feng J-X (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, Desouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8

    Article  Google Scholar 

  • Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen THI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782

    Article  CAS  Google Scholar 

  • Elumalai EK, Prasad TNVKV, Nagajyothi PC, David E (2011) A bird’s eye view on biogenic silver nanoparticles and their applications. Der Chem Sin 2:88–97

    CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252

    Article  CAS  Google Scholar 

  • Fayaz M, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Article  CAS  Google Scholar 

  • Gade A, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):1–5

    Article  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  Google Scholar 

  • Gade A, Rai M, Kulkarni S (2011) Phoma sorghina, a phytopathogen mediated synthesis of unique silver rods. Int J Green Nanotechnol 3:153–159

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Ciênc Tecnol Aliment Campinas 30(3):573–581

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    Article  CAS  Google Scholar 

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol Progr 24:476–480

    Article  CAS  Google Scholar 

  • Hemath NKS, Kumar G, Karthik L, Bhaskara Rao KV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    CAS  Google Scholar 

  • Hu CW, Lia M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2010) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  Google Scholar 

  • Kang T, Yoo SM, Kang M, Lee H, Kim H, Lee SY, Kim B (2012) Single-step multiplex detection of toxic metal ions by Au nanowires-on-chip sensor using reporter elimination. Lab Chip 12:3077–3081

    Article  CAS  Google Scholar 

  • Kannan N, Subbalaxmi S (2011) Biogenesis of nanoparticles—a current perspective. Rev Adv Mater Sci 27:99–114

    CAS  Google Scholar 

  • Karbasian M, Atyabi SM, Siadat SD, Momem SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum (PTCC 5115) employing response surface methodology. Am J Agric Biol Sci 3:433–437

    Article  Google Scholar 

  • Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869

    Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillum fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kim H, Kang H, Chu G, Byun G (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    Article  CAS  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  Google Scholar 

  • Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten P (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035

    Article  CAS  Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    Article  CAS  Google Scholar 

  • Kumar AS, Ansary AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdSe quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007b) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Kumar SA, Peter YA, Nadaeu JL (2008) Facile biosynthesis, separation, conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  CAS  Google Scholar 

  • Lang SS (2003) Waste fiber can be recycled into valuable products using new technique of electrospinning. Cornell researchers report. http://www.news.cornell.edu/releases/Sept03/electrospinning.ACS.ssl.html

  • Lee W-M, An Y-J, Yoon H, Kwbon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai Y-C, Braam J (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu Y, Tong Z, Prud’homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64:808–812

    Article  CAS  Google Scholar 

  • Rehman A, Majeed MI, Ihsan A, Hussain SZ, Saif-Ur-Rehman, Ghauri MA, Khalid ZM, Hussain I (2011) Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks. J Nanopart Res 13:6747–6754

  • Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:2025

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Environ Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Italian J Agron 7:e37

    Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Moaveni P, Karimi K, Valojerdi MZ (2011) The nanoparticles in plants: review paper. J Nano Struct Chem 2:59–78

    Google Scholar 

  • Moghaddam KM (2010) An introduction to microbial metal nanoparticle preparation method. J Young Investig 19:1–7

    Google Scholar 

  • Mohammadian A, Shaojaosadati SA, Rezee MH (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran 14:323–326

    CAS  Google Scholar 

  • Moharrer S, Mohammad B, Gharamohammad RA, Yargol M (2012) Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J Sci Technol 5:2443–24447

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4 ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastri M, Ajay Kumar PV, Alam M, Parischa R (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461–463

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103

    Article  CAS  Google Scholar 

  • Müller F, Houben A, Barker PE, Xiao Y, Käs JA, Melzer M (2006) Quantum dots-a versatile tool in plant science? J Nanobiotechnol 4:5

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Namasivayam SKR, Avimanyu (2011) Silver nanoparticle synthesis from Lecanicillium lecanii and evalutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. Int J Pharm Pharm Sci 3:190–195

  • Narayanan KB, Sakthivel N (2010) Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf A 380:156–161

    Article  CAS  Google Scholar 

  • Navazi ZR, Pazouki M, Halek FS (2010) Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iranian J Biotechnol 8:61

    Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Neethirajan S, Freund MS, Shafai C, Jayas DS, Thomson DJ (2009) Development of carbon dioxide sensor for agri-food industry. United States Provisional Patent no 2009-61/23891

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using pleurotus Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Bios 4:623–629

    Google Scholar 

  • Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanium dioxide affects disease development and yield of edible cowpea. Elect J Environ Agric Food Chem 7:942–2947

    Google Scholar 

  • Pandiarajan G, Govindaraj R, Kumar M, Ganesan V (2010) Biosynthesis of silver nanoparticles using silver nitrate through biotransformation. J Ecobiotechnol 2:13–18

    Google Scholar 

  • Patil SA (2009) Economics of agri poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi, Indian. http://www.assocham.org/nanobio2007/

  • Perea-De-Lugue A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381

    Article  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Kannaian N, Prakash U, Crawford S, Kumar AA (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    Article  CAS  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: A new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 1–14

    Chapter  Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonates crystals using the fungus Fusarium oxysporum. Langmuir 20:6827–6833

    Article  CAS  Google Scholar 

  • Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (BERK.) Sacc.: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Dig J Nanomater Bios 6:1299

    Google Scholar 

  • Reguera G, Mccarthy KD, Mehta T, Nicol JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  Google Scholar 

  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2003) Precision agriculture: changing the face of farming. Available at: http://www.geotimes.org/nov03/featureagric.html#author. Accessed 23 Feb 2011

  • Riddin T, Gericke M, Whiteley C (2006) Analysis of inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  Google Scholar 

  • Roach S (2006) Instant, portable, simultaneous pathogen inspection. http://www.foodproductiondaily-usa.com/news/ng.asp

  • Ruengruglikit C, Kim H, Miller RD, Huang Q (2004) Fabrication of nanoporous oligonucleotide microarrays for pathogen detection and identification. Polym Prepr 45:526

    CAS  Google Scholar 

  • Sadowski Z, Maliszewska GB, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mat Sci Poland 26:419–425

    CAS  Google Scholar 

  • Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K (2010) Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig J Nanomater Bios 5:887–895

    Google Scholar 

  • Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bio-reduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Dig J Nanomater Bios 6:1519–1528

    Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165:221–234

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162

    Article  CAS  Google Scholar 

  • Saravanan M (2010) Biosynthesis and in vitro studies of silver bionanoparticles synthesized from Aspergillus species and its antimicrobial activity against multi drug resistant clinical isolates. World Acad Sci Eng Technol 68:728–731

    Google Scholar 

  • Saravanan M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf B 77:214–218

    Article  CAS  Google Scholar 

  • Saravanan P, Gopalan R, Chandrasekaran V (2008) Synthesis and characterization of nanomaterials. Def Sci J 58:504–516

    CAS  Google Scholar 

  • Sarkar J, Chattopadhyay D, Patra S, Deo SS, Sinha S, Ghosh M, Mukherjee A, Acharya K (2011a) Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomater Bios 6:563–573

    Google Scholar 

  • Sarkar J, Dey P, Saha S, Acharya K (2011b) Mycosynthesis of selenium nanoparticles. IET Micro Nano Lett 6:599–602

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sastry KR, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400

    Article  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar KB, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:9035012

    Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys A 78:101–105

    Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakac SG, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc Biochem 44:939–943

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shao L, Gao Y, Feng Y (2011) Semiconductor quantum dots for biomedical applications. Sensors 11:11736–11751

    Article  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Singh P, Balaji R (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2:600–605

    CAS  Google Scholar 

  • Singh M, Manikandan S, Kumaraguru AK (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1:1–11

    Article  CAS  Google Scholar 

  • Spasova M, Manolova N, Naydenov M, Kuzmanova J (2011) Electrospun biohybrid materials for plant biocontrol containing chitosan and Trichoderma viride spores. J Bioact Compat Polym 26:48–55

    Article  CAS  Google Scholar 

  • Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–81

    Article  CAS  Google Scholar 

  • Sundaramoorthi C, Kalaivani M, Mathews DM, Palanisamy S, Kalaiselvan V, Rajasekaran A (2009) Biosynthesis of silver nanoparticles from Aspergillus niger and evaluation of its wound healing activity in experimental rat model. Int J PharmTech Res 1:1523–1529

    CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thirumurugan G, Shaheedha SM, Dhanaraju MD (2009) In vitro evaluation of anti-bacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. Int J Chem Tech R 1:714–716

    CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  Google Scholar 

  • Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913

    Article  CAS  Google Scholar 

  • Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Vaidyanathan R, Kalishwaralal K, Gopalram S, Gurunathan S (2009) Nanosilver—the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv 27:924–937

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40

    Article  CAS  Google Scholar 

  • Verma VC, Singh SK, Solanki R, Prakash S (2011) Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res Lett 6:16

    Article  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vo-Dinh T, Kasili PA, Wabuyele M (2006) Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomed Nanotechnol Biol Med 2:22–30

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  Google Scholar 

  • Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  Google Scholar 

  • Yoo SM, Kang T, Kang H, Lee H, Kang M, Lee SY, Kim B (2011) Combining a nanowire SERRS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. Small 7:3371–3376

    Article  CAS  Google Scholar 

  • Youtie Y, Shapira P, Porter AL (2008) Nanotechnology publications and citations by leading countries and blocs. J Nanopart Res 10:981–986

    Article  CAS  Google Scholar 

  • Zhang X, He X, Wang K, Wang Y, Li H, Tan W (2009) Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol 9:5738–5744

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494

    Article  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechrey SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Nat Acad Sci 101:15027–15032

    Article  CAS  Google Scholar 

  • Zhu Z-J, Yeh Y-C, Tang R, Yan B, Tamayo J, Vachet RW, Rotello VM (2011) Stability of quantum dots in live cells. Nat Chem 3:963–968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashyap, P.L., Kumar, S., Srivastava, A.K. et al. Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29, 191–207 (2013). https://doi.org/10.1007/s11274-012-1171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1171-6

Keywords

Navigation