Skip to main content

Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Arsenic (As) is classified as a Class A human carcinogen and has gained a substantial attention in recent years owing to its high levels currently observed in the environment and adverse impacts on human health. Several studies have delineated the biogeochemical behaviour of As in soil-plant system in relation to its chemical speciation and bioavailability. This chapter establishes a link between As speciation and biogeochemical behaviour of As in complex soil-plant systems. It gives an overview of different biogeochemical processes that govern environmental behaviour of As in soil-plant system; highlights how the chemical speciation of As affects its biogeochemical behaviour (adsorption/desorption, mobility, bioavailability/phytoavailability) in soil-plant system; and discusses relationship of soil physico-chemical properties (pH, clay contents, biological and microbial conditions, presence of organic and inorganic ligands and competing anions/cations) with chemical speciation of As as well as its biogeochemical behaviour in soil-plant system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas MHH, Abdelhafez AA (2013) Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere 90(2):588–594

    Article  CAS  Google Scholar 

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsinic acid ( DMA ) uptake and tolerance in maize ( Zea mays L. ). Plant and Soil 304(1–2):277–289

    Article  CAS  Google Scholar 

  • Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M, Hussain A (2016) Relationship between rhizosphere acidification and phytoremediation in two acacia species. J Soil Sediment 16(4):1392–1399

    Article  CAS  Google Scholar 

  • Abdul MKS, Jayasinghe SS, Chandana EPS, Jayasumana C, De Silva PMCS (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40(3):828–846

    Article  CAS  Google Scholar 

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil 240(2):311–319

    Article  CAS  Google Scholar 

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37(7):1619–1627

    Article  CAS  Google Scholar 

  • Ackerman AH, Pa C, Parks AN, Fricke MW, Ca S, Creed JT, Heitkemper DT, Vela NP (2005) Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ Sci Technol 39:5241–5246

    Article  CAS  Google Scholar 

  • Acosta JA, Arocena JM, Faz A (2015) Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere. doi:10.1016/j.chemosphere.2014.12.050

    Google Scholar 

  • Adra A, Morin G, Ona-Nguema G, Brest J (2015) Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage. Appl Geochem 9:1–8

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. Springer, New York, vol 32, p 374

    Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil 338:367–382

    Article  CAS  Google Scholar 

  • Akins MB, Lewis RJ (1976) Chemical distribution and gaseous evolution of arsenic-74 added to soils as DSMA-74As1. Soil Sci Soc Am 40(5):655–658

    Article  CAS  Google Scholar 

  • Ali M, Tarafdar SA (2003) Arsenic in drinking water and in scalp hair by EDXRF: a major recent health hazard in Bangladesh. J Radioanal Nucl Chem 256:297–305

    Article  CAS  Google Scholar 

  • Amstaetter K, Borch T, Larese-Casanova P, Kappler A (2010) Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ Sci Technol 44(1):102–108

    Article  CAS  Google Scholar 

  • Anup KC, Kalu S (2015) Soil pollution status and its remediation in Nepal. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds), Soil remediation and plants: prospects and challenges, Boston, Elsevier, ISBN:978–0–12-799,937-1, pp. 313–329

    Google Scholar 

  • Anwar T, Ahmad I, Tahir S (2013) reporting pesticide residues in soil of Lodhran district, Punjab, Pakistan. Intl J Biol Res 1(2):143–147

    Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradere P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Na H (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil 337(1):1–18

    Article  CAS  Google Scholar 

  • ATSDR: Agency for Toxic Substances and Disease Registry (2013) http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=3

  • Austruy A, Wanat N, Moussard C, Vernay P, Joussein E, Ledoigt G, Hitmi A (2013) Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. Ecotoxicol Environ Saf 90:28–34

    Article  CAS  Google Scholar 

  • Austruy A, Shahid M, Xiong T, Castrec M, Payre V, Niazi NK, Sabir M, Dumat C (2014) Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. J Soil Sediment 14:666–678

    Article  CAS  Google Scholar 

  • Aydin D, Coskun OF (2013) Comparison of EDTA-enhanced phytoextraction strategies with Nasturtium officinale (Watercress) on an artificially arsenic contaminated water. Pak J Bot 45(4):1423–1429

    CAS  Google Scholar 

  • Bagherifam S, Komarneni S, Lakzian A, Fotovat A, Khorasani R, Huang W, Ma J, Wang Y (2014a) Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl Clay Sci 95:119–125

    Article  CAS  Google Scholar 

  • Bagherifam S, Lakzian A, Fotovat A, Khorasani R, Komarneni S (2014b) In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. J Hazard Mater 273:247–252

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23(6):803–812

    Article  CAS  Google Scholar 

  • Bai J, Lin X, Yin R, Zhang H, Junhua W, Xueming C, Yongming L (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38:137–145

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation : principles and perspectives. Contrib to Sci Inst d’Estudis Catalans, Barcelona 2(3):333–344

    Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Moreno-Jimenez E (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  Google Scholar 

  • Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.) Sci Total Environ 454–455:598–603

    Article  CAS  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJC (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

    Article  CAS  Google Scholar 

  • Belogolova GА, Sokolova MG, Gordeeva ОN, Vaishlya ОB (2015) Speciation of arsenic and its accumulation by plants from rhizosphere soils under the influence of Azotobacter and Bacillus bacteria. J Geochem Explor 149:52–58

    Article  CAS  Google Scholar 

  • Bennett WW, Teasdale PR, Welsh DT, Panther JG, Stewart RR, Price HL, Jolley DF (2012) Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGTcolourimetric DET technique. Environ Chem 9(1):31–40

    Article  CAS  Google Scholar 

  • Bergqvist C, Herbert R, Persson I, Greger M (2014) Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environ Pollut 184:540–546

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal C, Majumdar J, Santra SC (2010) Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut 213:3–13

    Article  CAS  Google Scholar 

  • Bibi I, Icenhower J, Niazi NK, Naz T, Shahid M, Bashir S (2016) Clay minerals: structure, chemistry and significance in contaminated environments and geological CO2 sequestration. In: Prasad MNV, Shih K (eds) Environmental materials and waste: resource recovery and pollution prevention. Elsevier Inc., Boston, pp 543–567

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31(1):9–18

    Article  CAS  Google Scholar 

  • Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P (2014) Role of competing ions in the mobilization ofarsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res 55:30–39

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Bothe JV, Brown PW (1999) Arsenic immobilization by calcium arsenate formation. Environ Sci Technol 33(21):3806–3811

    Article  CAS  Google Scholar 

  • Brammer H, Ravenscroft P (2009) Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int 35(3):647–654

    Article  CAS  Google Scholar 

  • Bundschuh J, Litterd MI, Parvezg F, Román-Rossh G, Nicollii HB, Jeanc JS, Liuj CW, Lópezk D, Armiental MA, Guilhermem LRG, Cuevasn AG, Cornejoo L, Cumbalq L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Article  CAS  Google Scholar 

  • Bustos V, Mondaca P, Verdejo J, Sauvé S, Gaete H, Celis-Diez JL, Neaman A (2015) Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicol Environ Saf 122:448–454

    Article  CAS  Google Scholar 

  • Buzek F, Cejkova B, Dousova B, Jackova I, Kadlecova R, Lnenickova F (2013) Mobilization of arsenic from acid deposition – the Elbe River catchment, Czech Republic. Appl Geochem 33:281–293

    Article  CAS  Google Scholar 

  • Cai L, Xu Z, Bao P, He M, Dou L, Chen L et al (2015) Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Geochem Explor 148:189–195

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126(2):157–167

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Jugsujinda A, Burlo F, Delaune RD, Patrick WH (2000) Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res 34(1):216–224

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MMM, Das B, Murrill M, Dey S, Chandra Mukherjee S et al (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44(19):5789–5802

    Article  CAS  Google Scholar 

  • Chandraprabha MN, Natarajan KA (2011) Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans. J Biochem Technol 3(2):257–265

    CAS  Google Scholar 

  • Chen ML, Ma LY, Chen XW (2014) New procedures for arsenic speciation: a review. Talanta 125:78–86

    Article  CAS  Google Scholar 

  • Chilvers DC, Peterson PJ (1987) Lead, mercury, cadmium and arsenic in the environment. Global Cycling Arsenic 1:279–301

    Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375

    Article  CAS  Google Scholar 

  • Chuan-ping L, Chun-ling L, Xiang-hua X, Chuang-an W, Fang-Bai L, Gan Z (2012) Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Chemosphere 86:1106–1111

    Article  CAS  Google Scholar 

  • Cobb GP, Sands K, Waters M, Wixson BG, Dorward-King E (2000) Accumulation of heavy metals by vegetables grown in mine wastes. Environ Toxicol Chem 19(3):600–607

    Article  CAS  Google Scholar 

  • Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V (2010) Impact of glucose on microbial community of a soil containing pyrite cinders: role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem 42(5):699–707

    Article  CAS  Google Scholar 

  • Corwin DL, David A, Goldberg S (1999) Mobility of arsenic in soil from the Rocky mountain arsenal area. J Contam Hydrol 39(1–2):35–58

    Article  CAS  Google Scholar 

  • Cutler WG, Brewer RC, El-Kadi A, Hue NV, Niemeyer PG, Peard J, Ray C (2013) Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Sci Total Environ 442:177–188

    Article  CAS  Google Scholar 

  • Cutler WG, El-Kadi A, Hue NV, Peard J, Scheckel K, Ray C (2014) Iron amendments to reduce bioaccessible arsenic. J Hazard Mater 279:554–561

    Article  CAS  Google Scholar 

  • Dahal BM, Fuerhacker M, Mentler A, Karki KB, Shrestha RR, Blum WEH (2008) Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environ Pollut 155(1):157–163

    Article  CAS  Google Scholar 

  • De Gregori I, Fuentes E, Olivares D, Pinochet H (2004) Extractable copper, arsenic and antimony by EDTA solution from agricultural Chilean soils and its transfer to alfalfa plants (Medicago sativa L.) J Environ Monit 6(1):38–47

    Article  CAS  Google Scholar 

  • De La Calle MB, Baer I, Robouch P, Cordeiro F, Emteborg H, Baxter MJ, Brereton N, Raber G, Velez D, Devesa V, Rubio R, Llorente-Mirandes T, Raab A, Feldmann J, Sloth JJ, Rasmussen RR, D’Amato M, Cubadda F (2012) Is it possible to agree on a value for inorganic arsenic in food? The outcome of IMEP-112. Anal Bioanal Chem 404(8):2475–2488

    Article  CAS  Google Scholar 

  • Dickens R, Hiltbold AE (1967) Movement and persistence of methanearsonates in soil. Weeds 5:299–304

    Article  Google Scholar 

  • Doušová B, Fuitová L, Grygar T, Machovic V, Kolousek D, Herzogová L, Lhotka M (2009) Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater. J Hazard Mater 165:134–140

    Article  CAS  Google Scholar 

  • Doušová B, Lhotka M, Grygar T, Machovic V, Herzogová L (2011) In situ co-adsorption of arsenic and iron/manganese ions on raw clays. Appl Clay Sci 54(2):166–171

    Article  CAS  Google Scholar 

  • Dousova B, Buzek F, Rothwell J, Krejcova S, Lhotka M (2012) Adsorption behavior of arsenic relating to different natural solids: soils, stream sediments and peats. Sci Total Environ 433:456–461

    Article  CAS  Google Scholar 

  • Elliott HA, Shastri NL (1999) Extractive decontamination of metal-polluted soils using oxalate. Water Air Soil Pollut 110(3–4):335–346

    Article  CAS  Google Scholar 

  • Epstein RA (2009) Simple rules for a complex world. Harvard University Press, Massachusetts, United States

    Google Scholar 

  • Fakour H, Lin TF (2014) Experimental determination and modeling of arsenic complexation with humic and fulvic acids. J Hazard Mater 279:569–578

    Article  CAS  Google Scholar 

  • Fayiga AO, Ma LQ, Zhou Q (2007) Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil. Environ Pollut 147(3):737–742

    Article  CAS  Google Scholar 

  • Feng Q, Zhang Z, Chen Y, Liu L, Zhang Z, Chen C (2013) Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe(OH)3 colloid, H2SiO3 colloid and phosphate. Procedia Environ Sci 18(86):26–36

    Article  CAS  Google Scholar 

  • Fitamo D, Itana F, Olsson M (2007) Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia. Environ Manag 39(2):178–193

    Article  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  CAS  Google Scholar 

  • Foucault Y, Lévêque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemosphere 93(7):1430–1435

    Article  CAS  Google Scholar 

  • Francesconi KA (2002) Applications of liquid chromatography-electrospray ionization-single quadrupole mass spectrometry for determining arsenic compounds in biological samples. Appl Organomet Chem 16(8):437–445

    Article  Google Scholar 

  • Fu Y, Chen M, Bi X, He Y, Ren L, Xiang W, Qiao S, Yan S, Li Z, Ma Z (2011) Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environ Pollut 159:1757–1762

    Article  CAS  Google Scholar 

  • Fuessle RW, Taylor MA (2004) Stabilization of arsenite wastes with prior oxidation. J Environ Engg 130(9):1063–1066

    Article  CAS  Google Scholar 

  • Garau G, Silvetti M, Castaldi P, Mele E, Deiana P, Deiana S (2014) Stabilising metal(loid)s in soil with iron and aluminium-based products: microbial, biochemical and plant growth impact. J Environ Manage 139:146–153

    Article  CAS  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ (2015) Bacterial ability in AsIII oxidation and AsV reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chemosphere. doi:10.1016/j.chemosphere.2014.12.046

    Google Scholar 

  • Ghosh-Dastidar A, Mahuli SK, Agnihotri R, Fan L (1996) Investigation of high-reactivity calcium carbonate sorbent for enhanced SO2 capture. Indus Engg Chem Res 35:598–606

    Article  CAS  Google Scholar 

  • Girouard E, Zagury GJ (2009) Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Sci Total Environ 407(8):2576–2585

    Article  CAS  Google Scholar 

  • Goldberg ED (1954) Marine geochemistry. Chemical scavengers of the sea. J Geol 62:249–265

    Article  CAS  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2008) Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: repeated harvests and arsenic redistribution. Environ Pollut 154(2):212–218

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Ma LQ, Santos JAG, MIS M (2009) Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Sci Total Environ 407(16):4711–4716

    Article  CAS  Google Scholar 

  • Gonzaga MIS, Ma LQ, Pacheco EP, dos Santos WM (2012) Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils. Int J Phytoremediation 14(10):939–949

    Article  CAS  Google Scholar 

  • Gorny J, Billon G, Lesven L, Dumoulin D, Madé B, Noiriel C (2015) Arsenic behavior in river sediments under redox gradient: a review. Sci Total Environ 505:423–434

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR (2001) Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65(6):1680

    Article  CAS  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR, Saunders AM (2002) Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual 31:1115–1123

    Article  CAS  Google Scholar 

  • Gregory SJ, Anderson CWN, Camps Arbestain M, McManus MT (2014) Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric Ecosyst Environ 191:133–141

    Article  CAS  Google Scholar 

  • Griffin RA, Shimp NF (1978) Attenuation of pollutants in municipal landfill leachate by clay minerals: US Environmental Protection Agency, Cincinnati, Ohio. EPA-600/2–78-1570H

    Google Scholar 

  • Grisafe DA, Hummel FA (1970) Pentavalent ion substitutions in the apatite structure part B. Color J Solid State Chem 2:167–175

    Article  CAS  Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant and Soil 272(1–2):337–347

    Article  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35(19):3863–3868

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157(10):2654–2662

    Article  CAS  Google Scholar 

  • Hassan F, Abdel-Mohsen M, Elhadidy H (2014) Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int J Biol Macromol 68:125–130

    Article  CAS  Google Scholar 

  • Henke KR (2009) Arsenic: environmental chemistry, health threats and waste treatment. Hoboken, Wiley, pp. 1–569

    Google Scholar 

  • Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil-root interface. Wiley-IUPAC Ser Biophys Process Environ Syst 267–311

    Google Scholar 

  • Hossain MA, Cho JI, Han M, Ahn CH, Jeon JS, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520

    Article  CAS  Google Scholar 

  • Hua J, Jiang Q, Bai J, Ding F, Lin X, Yin Y (2014) Interactions between arbuscular mycorrhizal fungi and fungivorous nematodes on the growth and arsenic uptake of tobacco in arsenic-contaminated soils. Appl Soil Ecol 84:176–184

    Article  Google Scholar 

  • Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70(8):2023–2033

    Article  CAS  Google Scholar 

  • Janoš P, Vavrova J, Herzogova L, Pilarova V, Jano P, Vávrová J, Harzogová L (2010) Effects of inorganic and organic amendments on the mobility (Leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma 159(3–4):335–341

    Article  CAS  Google Scholar 

  • Jia Y, Guo H, Jiang Y, Wu Y, Zhou Y (2014) Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. J Hydrol 518:410–420

    Article  CAS  Google Scholar 

  • Jiang JP, Yuan XB, Ye LL, Liao SC, Zhang XH (2013) Characteristics of straw biochar and its influence on the forms of arsenic in heavy metal polluted soil. Appl Mech Mater 409:133–138

    Article  CAS  Google Scholar 

  • Jiang Y, Zeng X, Fan X, Chao S, Zhu M, Cao H (2015) Levels of arsenic pollution in daily foodstuffs and soils and its associated human health risk in a town in Jiangsu Province, China. Ecotoxicol Environ Saf 122:198–204

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43(8):1723–1731

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48(6–7):501–515

    Article  CAS  Google Scholar 

  • Joseph T, Dubey B, Ea MB (2015) A critical review of arsenic exposures for Bangladeshi adults. Sci Total Environ 527–528:540–551

    Article  CAS  Google Scholar 

  • Juillot F, Ildefonse P, Morin G, Calas G, Kersabiec aMDe, Benedetti M (1999) Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Appl Geochem 14:1031–1048

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer Science & Business Media

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias K (1989) Mikroelementy v pochvakh i rasteniyakh (Microelements in Soils and Plants). Mir, Moscow, Netherlands, pp 183–184

    Google Scholar 

  • Kalia K, Joshi DN (2009) Detoxification of arsenic. Handbook of toxicology of chemical warfare agents. Elsevier, Amsterdam, Netherlands, pp 1083–1100

    Google Scholar 

  • Kaplan DI, Knox AS (2004) Enhanced contaminant desorption induced by phosphate mineral additions to sediment. Environ Sci Technol 38(11):3153–3160

    Article  CAS  Google Scholar 

  • Karczewska A, Lewinska K, Galka B (2013) Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. J Hazard Mater 262:1014–1021

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. doi:10.1016/j.gexplo.2016.11.021

    Google Scholar 

  • Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2009) Fate of irrigation-water arsenic in rice soils of Bangladesh. Plant and Soil 322(1):263–277

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1–2):19–32

    Article  CAS  Google Scholar 

  • Ko MS, Kim JY, Park HS, Kim KW (2015) Field assessment of arsenic immobilization in soil amended with iron rich acid mine drainage sludge. J Clean Prod 108:1073–1080

    Article  CAS  Google Scholar 

  • Kocar BD, Herbel MJ, Tufano KJ, Fendorf S (2006) Contrasting effects of dissimilatory iron (III) and arsenic (V) reduction on arsenic retention and transport. Environ Sci Technol 40(21):6715–6721

    Article  CAS  Google Scholar 

  • Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS (2007) Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl Environ Microbiol 73(16):5130–5137

    Article  CAS  Google Scholar 

  • Kumpiene J, Castillo Montesinos I, Lagerkvist A, Maurice C (2007) Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere 67(2):410–417

    Article  CAS  Google Scholar 

  • Kuppardt A, Vetterlein D, Harms H, Chatzinotas A (2010) Visualisation of gradients in arsenic concentrations around individual roots of Zea mays L. using agar-immobilized bioreporter bacteria. Plant and Soil 329(1):295–306

    Article  CAS  Google Scholar 

  • Kwon JC, Lee JS, Jung MC (2012) Arsenic contamination in agricultural soils surrounding mining sites in relation to geology and mineralization types. Appl Geochem 27(5):1020–1026

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158(3–4):443–449

    Article  CAS  Google Scholar 

  • Langner P, Mikutta C, Kretzschmar R (2011) Arsenic sequestration by organic sulphur in peat. Nat Geosci 5(1):66–73

    Article  CAS  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163(1):1–9

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar systems. Biochar for Environmental Management, Science and Technology, pp 147–181

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Lei M, Wan XM, Huang ZC, Chen TB, Li XW, Liu YR (2012) First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata. Environ Pollut 161:1–7

    Article  CAS  Google Scholar 

  • Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. J Geochem Explor 116–117(3):51–59

    Article  CAS  Google Scholar 

  • Lenoble V, Omanović D, Garnier C, Mounier S, Donlagić N, Le Poupon C, Pižeta I (2013) Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Sci Total Environ 443:420–428

    Article  CAS  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Sci Total Environ 324(5932):1312–1314

    CAS  Google Scholar 

  • Li Y, Liu Z, Li Q, Zhao Z, Liu Z, Zeng L, Li L (2011) Removal of arsenic from arsenate complex contained in secondary zinc oxide. Hydrometallurgy 109(3–4):237–244

    Article  CAS  Google Scholar 

  • Li H-B, Li J, Zhu Y-G, Juhasz AL, Ma LQ (2015) Comparison of arsenic bioaccessibility in house dust and contaminated soils based on four in vitro assays. Sci Total Environ 532:803–811

    Article  CAS  Google Scholar 

  • Liang Y, Zhang W, Chen Q, Liu Y, Ding R (2006) Effect of exogenous silicon (Si) on H+ -ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.) Environ Exp Bot 57:212–219

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428

    Article  CAS  Google Scholar 

  • Liang Y, Van Nostrand JD, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J (2011) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5(3):403–413

    Article  Google Scholar 

  • Liang S, Luo J, Ma LQ (2014) Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Environ Pollut 194:105–111

    Article  CAS  Google Scholar 

  • Lin Z, Puls RW (2000) Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ Geol 39(7):753–759

    Article  CAS  Google Scholar 

  • Lin HT, Wang MC, Seshaiah K (2008) Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost. Chemosphere 71:742–749

    Article  CAS  Google Scholar 

  • Liu R, Yang C, Li S, Sun P, Shen S, Li Z, Liu K (2014) Arsenic mobility in the arsenic-contaminated Yangzonghai Lake in China. Ecotoxicol Environ Saf 107:321–327

    Article  CAS  Google Scholar 

  • Liu X, Zhang W, Hu Y, Hu E, Xie X, Wang L, Cheng H (2015) Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere 119:273–281

    Article  CAS  Google Scholar 

  • Llorente-Mirandes T, Barbero M, Rubio R, Lopez-Sanchez JF (2014) Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem 158:207–215

    Article  CAS  Google Scholar 

  • Lockwood CL, Mortimer RJG, Stewart DI, Mayes WM, Peacock CL, Polya DA, Lythgoe PR, Lehoux AP, Gruiz K, Burke IT (2014) Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions. Appl Geochem 51:268–277

    Article  CAS  Google Scholar 

  • Lucchini P, Quilliam RS, DeLuca TH, Vamerali T, Jones DL (2014) Does biochar application alter heavy metal dynamics in agricultural soil? Agric Ecosyst Environ 184:149–157

    Article  CAS  Google Scholar 

  • Madejón P, Lepp NW (2007) Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Sci Total Environ 379(2–3):256–262

    Article  CAS  Google Scholar 

  • MAFF (1993) Code of good practice for the protection of soil. Ministry of Agriculture, Fisheries and Food, London

    Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Mäkelä-Kurtto R, Eurola M, Justén A, Backman B, Luoma S, Karttunen V, Ruskeeniemi T (2007) Arsenic and other elements in agro-ecosystems in Finland and particularly in the Pirkanmaa region, pp 1–121

    Google Scholar 

  • Malandrino M, Abollino O, Buoso S, Giacomino A, La Gioia C, Mentasti E (2011) Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 82(2):169–178

    Article  CAS  Google Scholar 

  • Mallick S, Sinam G, Sinha S (2011) Study on arsenate tolerant and sensitive cultivars of Zea mays L.: differential detoxification mechanism and effect on nutrients status. Ecotoxicol Environ Saf 74(5):1316–1324

    Article  CAS  Google Scholar 

  • Marabottini R, Stazi SR, Papp R, Grego S, Moscatelli MC (2013) Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol Environ Saf 96:147–153

    Article  CAS  Google Scholar 

  • Martínez-Sánchez MJ, Martínez-López S, García-Lorenzo ML, Martínez-Martínez LB, Pérez-Sirvent C (2011) Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma 160(3–4):535–541

    Article  CAS  Google Scholar 

  • Marwa EMM, Meharg AA, Rice CM (2012) Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania. Sci Total Environ 416:180–186

    Article  CAS  Google Scholar 

  • Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015) Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 135:328–335

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, Oxford, UK

    Google Scholar 

  • McCauley A, Jones C, Jacobsen J (2009) Soil pH and organic matter. Nutrient Management Module 8. Montana State University. Available from http://landresources.montana.edu/NM/Modules/Module8.pdf

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154(1):29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116(1):29–35

    Article  CAS  Google Scholar 

  • Meharg AA, MacNair MR (1992) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity 69(4):336–341

    Article  CAS  Google Scholar 

  • Merry RH, Tiller KG, Alston AM (1983) Accumulation of copper, lead and arsenic in some Australian orchard soils. Soil Res 21(4):549–561

    Article  CAS  Google Scholar 

  • MHC (2005) Maximum levels of contaminants in foods, GB 2762–2005. Ministry of Health of China, Beijing

    Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62(12):4391–4398

    Article  CAS  Google Scholar 

  • Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C (2015) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soil Sediment. doi:10.1007/s11368–015–1069-7

    Google Scholar 

  • Moon DH, Dermatas D, Menounou N (2004) Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci Total Environ 330(1–3):171–185

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Clemente R, Mestrot A, Meharg A (2013) Arsenic and selenium mobilisation from organic matter treated mine spoil with and without inorganic fertilisation. Environ Pollut 173:238–244

    Article  CAS  Google Scholar 

  • Mucha AP, Almeida CMR, Aa B, Vasconcelos MTSD (2010) LMWOA (low molecular weight organic acid) exudation by salt marsh plants: natural variation and response to Cu contamination. Estuar Coast Shelf Sci 88(1):63–70

    Article  CAS  Google Scholar 

  • Mühlbachová G (2009) Microbial biomass dynamics after addition of EDTA into heavy metal contaminated soils. Plant Soil Environ 55(12):544–550

    Google Scholar 

  • Mühlbachová G (2011) Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecol Eng 37(7):1064–1071

    Article  Google Scholar 

  • Nabulo G, Black CR, Craigon J, Young SD (2012) Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environ Pollut 162:389–398

    Article  CAS  Google Scholar 

  • Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) Soil Res 48(7):638–647

    Article  CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Vasken Aposhian H, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  CAS  Google Scholar 

  • Nearing MM, Koch I, Reimer KJ (2014) Complementary arsenic speciation methods: a review. Spectrochim Acta – Part B At Spectrosc 99:150–162

    Article  CAS  Google Scholar 

  • Neidhardt H, Norra S, Tang X, Guo H, Stüben D (2012) Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: results from a case study in the Inner Mongolia, China. Environ Pollut 163:8–13

    Article  CAS  Google Scholar 

  • Neidhardt H, Kramar U, Tang X, Guo H, Norra S (2015) Arsenic accumulation in the roots of Helianthus annuus and Zea mays by irrigation with arsenic-rich groundwater: insights from synchrotron X-ray fluorescence imaging. Chemie der Erde-Geochemistry

    Google Scholar 

  • Neupane G, Donahoe RJ (2012) Attenuation of trace elements in coal fly ash leachates by surfactant-modified zeolite. J Hazard Mater 229–230:201–208

    Article  CAS  Google Scholar 

  • Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154

    Article  CAS  Google Scholar 

  • Newman MC, Jagoe CH (1994) Ligands and the bioavailability of metals in aquatic environments. In: Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability: physical, chemical, and biological interactions. CRC Press, Boca Raton, pp 39–62

    Google Scholar 

  • Ng JC (2005) Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2(3):146–160

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2011) Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site. Int J Phytoremediation 13(9):912–932

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Van Zwieten L, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19(8):3506–3515

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Minasny B (2015) Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. Intl J Environ Sci Tech 12(6):1965–1974

    Article  CAS  Google Scholar 

  • Niazi NK, Murtaza B, Bibi I, Shahid M, White JC, Nawaz MK, Bashir S, Murtaza G (2016) Removal and recovery of metals by biosorbents and biochars derived from biowastes. In: MNV P, Shih K (eds) Environmental materials and waste: resource recovery and pollution prevention. Elsevier, San Diego. doi:10.1016/B978–0–12-803,837-6.00007-X

    Google Scholar 

  • NJDEP (2006) New Jersey Department of Environmental Protection. http://www.nj.gov/health/epht/arsenic.shtml

  • Northup A, Cassidy D (2008) Calcium peroxide (CaO2) for use in modified Fenton chemistry. J Hazard Mater 152(3):1164–1170

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview. Trace Metals Contam Environ 9:3–60

    Article  CAS  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83. doi:10.3389/fpls.2011.00083

    Article  Google Scholar 

  • O’Neill P (1995) Arsenic. In: Alloway BJ (ed) Heavy metals in soils, Blackie, NewYork, vol 2. pp 105–121

    Chapter  Google Scholar 

  • O’Reilly J, Watts MJ, Shaw RA, Marcilla AL, Ward NI (2010) Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. Environ Geochem Health 32(6):491–515

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Wang Y, Foster AL, Juillot F, Calas G, Brown GE Jr (2010) XANES evidence for rapid arsenic (III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Tech 44(14):5416–5422

    Article  CAS  Google Scholar 

  • Owojori OJ, Reinecke AJ, Rozanov AB (2010) Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida. Ecotoxicol Environ Saf 73(3):407–414

    Article  CAS  Google Scholar 

  • Pan W, Wu C, Xue S, Hartley W (2014) Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J Environ Sci (China) 26(4):892–899

    Article  CAS  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  Google Scholar 

  • Polizzotto ML, Harvey CF, Li G, Badruzzman B, Ali A, Newville M, Sutton S, Fendorf S (2006) Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem Geol 228:97–111

    Article  CAS  Google Scholar 

  • Pongratz R (1998) Arsenic speciation in environmental samples of contaminated soil. Sci Total Environ 224:133–141

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Heavy metal stress in plants. Springer, Heidelberg, pp 121–147

    Google Scholar 

  • Qi Y, Donahoe RJ (2008) The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci Total Environ 405:246–254

    Article  CAS  Google Scholar 

  • Qin F, Shan XQ, Wei B (2004) Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57:253–263

    Article  CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2004) Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant 120(2):280–286

    Article  CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Gonnelli C, Gabbrielli R, Navari-Izzo F (2009) Naturally-assisted metal phytoextraction by Brassica carinata: role of root exudates. Environ Pollut 157(10):2697–2703

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4(3):197–203

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytorem. doi:10.1080/15226514.2016.1278426

    Google Scholar 

  • Rahman MA, Mamunur Rahman M, Kadohashi K, Maki T, Hasegawa H (2011) Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.) Chemosphere 84(4):439–445

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008) Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf 70(2):311–318

    Article  CAS  Google Scholar 

  • Rahman MA, Hogan B, Duncan E, Doyle C, Krassoi R, Rahman MM, Naidu R, Lim RP, Maher W, Hassler C (2014) Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicol Environ Saf 106:126–135

    Article  CAS  Google Scholar 

  • Ramos-Miras JJ, Roca-Perez L, Guzmán-Palomino M, Boluda R, Gil C (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110(2):186–192

    Article  CAS  Google Scholar 

  • Ravenscroft P, McArthur JMM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. Arsenic Exposure and Health Effects IV, In, pp 53–78

    Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects Arsenic speciation and sorption onto hematite. Environ Sci Technol 36(13):2889–2896

    Article  CAS  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. Plant and Soil 245(1):59–70

    Article  CAS  Google Scholar 

  • Rodríguez JD, Jiménez A, Prieto M, Torre L, García-Granda S (2008) Interaction of gypsum with As (V)-bearing aqueous solutions: surface precipitation of guerinite, sainfeldite, and Ca2 NaH (AsO4)2 •6H2O, a synthetic arsenate. Am Mineral 93:928–939

    Google Scholar 

  • Rojas R, Morillo J, Usero J, Delgado-Moreno L, Gan J (2013) Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Sci Total Environ 458–460:614–623

    Article  CAS  Google Scholar 

  • Rosas-Castor JM, Guzmán-Mar JL, Hernández-Ramírez A, Garza-González MT, Hinojosa-Reyes L (2014) Arsenic accumulation in maize crop (Zea mays): a review. Sci Total Environ 488–489:176–187

    Article  CAS  Google Scholar 

  • Rowland HAL, Polya DA, Lloyd JR, Pancost RD (2006) Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org Geochem 37(9):1101–1114

    Article  CAS  Google Scholar 

  • Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 213(6):414–427

    Article  CAS  Google Scholar 

  • Ryu J-H, Gao S, Tanji KK (2010) Speciation and behavior of arsenic in evaporation basins, California, USA. Environ Earth Sci 61:1599–1612

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2015) Phytoremediation. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants: prospects and challenges, contaminated soil is indispensable. Elsevier, Boston, pp 85–105 ISBN:978–0–12-799,937-1

    Chapter  Google Scholar 

  • Sadiq M (1994) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    Google Scholar 

  • Saifullah SM, Zia-Ur-Rehman M, Sabir M, Ahmad HR (2015) Phytoremediation of Pb-contaminated soils using synthetic chelates. In: Hakeem K et al (eds) Soil remediation and plants. Elsevier, San Diego, pp 397–414

    Chapter  Google Scholar 

  • Sánchez-Marín P, Santos-Echeandía J, Nieto-Cid M, Álvarez-Salgado XA, Beiras R (2010) Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquat Toxicol 96:90–102

    Article  CAS  Google Scholar 

  • Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM, Detmann E, Araújo WL, Damatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant:355–366

    Google Scholar 

  • Saqib M, Zörb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35(7):633–639

    Article  CAS  Google Scholar 

  • Sauvé S, Hendershot WH, Allen HE (2000) Solid-solution partitioning of metals in contaminated Soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34(7):1125–1131

    Article  CAS  Google Scholar 

  • Seyler P, Martin J (1989) Biogeochemical processes affecting arsenic species distribution in a permanently stratified Lake. Environ Sci Technol 23:1258–1263

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Aslam M, Pinelli E (2012a) Assessment of lead speciation by organic ligands using speciation models. Chem Spec Bioavailab 24:248–252

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012b) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697

    Article  CAS  Google Scholar 

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E (2012c) Long-term field metal extraction by pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012d) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12

    Article  CAS  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013a) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev. Environ Contam Toxicol 221:107–127

    CAS  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013b) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014a) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soil Sediment 14:835–843

    Article  CAS  Google Scholar 

  • Shahid M, Xiong T, Masood N, Leveque T, Quenea K, Austruy A, Foucault Y, Dumat C (2014b) Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil: a case study of food-chain contamination. J Soil Sediment 14:655–665

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014c) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014d) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289

    Article  CAS  Google Scholar 

  • Shahid M, Sabir M, Ali MA, Ghafoor A (2014e) Effect of organic amendments on phytoavailability of nickel and growth of berseem (Trifolium alexandrinum) under nickel contaminated soil conditions. Chem Spec Bioavailab 26:37–42

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014f) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam An Intl J 23:389–416

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014g) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015a) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer, Cham. doi:10.1007/978-3-319-23,162-4_1

    Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015b) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017a) Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2017b) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Ali F (2015a) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2015.1109910

    Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Arshad M (2015b) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12,371–12,390

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759

    Article  CAS  Google Scholar 

  • Sharma AK, Tjell JC, Sloth JJ, Holm PE (2014) Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl Geochem 41:11–33

    Article  CAS  Google Scholar 

  • Shen H, He Z, Yan H, Xing Z, Chen Y, Xu W, Ma M (2014) The fronds tonoplast quantitative proteomic analysis in arsenic hyperaccumulator Pteris vittata L. J Proteomics:1–12

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042

    Article  CAS  Google Scholar 

  • Shi GL, Zhu S, Bai SN, Xia Y, Lou LQ, Cai QS (2015) The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other. J Hazard Mater 299:94–102

    Article  CAS  Google Scholar 

  • Shuman LM, Luxmoore RJ (1991) Chemical forms of micronutrients in soils. In: Luxmoore R (ed) Micronutrients in agriculture, 2nd edn. SSSA, Madison, pp 113–144

    Google Scholar 

  • Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137(3–4):504–510

    Article  CAS  Google Scholar 

  • Singh N, Raj A, Khare PB, Tripathi RD, Jamil S (2010) Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Bioresour Technol 101(23):8960–8968

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment. A review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant and Soil 248(1–2):71–83

    Article  CAS  Google Scholar 

  • Smith E, Juhasz AL, Weber J, Naidu R (2008) Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci Total Environ 392(2–3):277–283.

    Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  • Sposito G (2008) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Suess E, Planer-Friedrich B (2012) Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere 89(11):1390–1398

    Article  CAS  Google Scholar 

  • Tang Y, Wang J, Gao N (2010) Characteristics and model studies for fluoride and arsenic adsorption on goethite. J Environ Sci 22(11):1689–1694

    Article  CAS  Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  Google Scholar 

  • Tarvainen T, Albanese S, Birke M, Poňavič M, Reimann C (2013) Arsenic in agricultural and grazing land soils of Europe. Appl Geochem 28:2–10

    Article  CAS  Google Scholar 

  • Thies JE, Rilling MC (2009) Characteristics of biochar: biological properties. In: Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Tighe M, Lockwood PV, Ashley PM, Murison RD, Wilson SC (2013) The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system. Sci Total Environ 463–464:151–160

    Article  CAS  Google Scholar 

  • Tiwari KK, Singh NK, Patel MP, Tiwari MR, Rai UN (2011) Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicol Environ Saf 74(6):1670–1677

    Article  CAS  Google Scholar 

  • Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46(1):31–38

    Article  CAS  Google Scholar 

  • Tong J, Guo H, Wei C (2014) Arsenic contamination of the soil–wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Sci Total Environ 496:479–487

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Tu S, Ma L, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil 258(1–2):9–19

    Article  CAS  Google Scholar 

  • Tufano KJ, Reyes C, Saltikov CW, Fendorf S (2008) Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ Sci Technol 42(22):8283–8289

    Article  CAS  Google Scholar 

  • Uddh-Söderberg TE, SGunnarsson SG, Hogmalm KJ, Lindegård MIBG, Augustsson ALM (2015) An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites. Sci Total Environ 536:189–197

    Article  CAS  Google Scholar 

  • Udovic M, Lestan D (2009) Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74(10):1367–1373

    Article  CAS  Google Scholar 

  • Ullah S, Shahid M, Zia-Ur-Rehman M, Sabir M, Ahmad HR (2015a) Phytoremediation of Pb-Contaminated soils using synthetic chelates. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants. Elsevier, Boston, pp 397–414

    Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015b) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Ungaro F, Ragazzi F, Cappellin R, Giandon P (2008) Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. J Geochem Explor 96(2):117–131

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2015) http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm.

  • Usman ARA, Kuzyakov Y, Stahr K (2004) Effect of clay minerals on extractability of heavy metals and sewage sludge mineralization in soil. Chem Ecol 20(2):123–135

    Article  CAS  Google Scholar 

  • Vallee BL, Ulmer DD, Wacker WEC (1960) Arsenic toxicology and biochemistry. J Occup Environ Med 2(7):358

    Article  Google Scholar 

  • Vaxevanidou K, Giannikou S, Papassiopi N (2012) Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece. J Hazard Mater 241–242:307–315

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366(2–3):701–721

    Article  CAS  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manage 90(8):2367–2376

    Article  CAS  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  Google Scholar 

  • Wang Z, Bush RT, Liu J (2013) Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands. Chemosphere 93(9):1936–1941

    Article  CAS  Google Scholar 

  • Warren GP, Alloway BJ (2003) Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J Environ Qual 32:767–772

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB (2006) Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63(6):1048–1053

    Article  CAS  Google Scholar 

  • Wei B, Yu J, Li H, Yang L, Xia Y, Wu K, Cui N (2015) Arsenic metabolites and methylation capacity among individuals living in a rural area with endemic Arseniasis in Inner Mongolia, China. Biol Trace Elem Res 170(2):300–308

    Article  CAS  Google Scholar 

  • Weiss JV, Emerson D, Backer SM, Megonigal JP (2003) Enumeration of Fe (II)-oxidizing and Fe (III)-reducing bacteria in the root zone of wetland plants: implications for a rhizosphere iron cycle. Biogeochem 64(1):77–96

    Article  CAS  Google Scholar 

  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39(15):5531–5540

    Article  CAS  Google Scholar 

  • Williams G, West JM, Koch I, Reimer KJ, Snow ET (2009) Arsenic speciation in the freshwater crayfish, Cherax destructor Clark. Sci Total Environ 407(8):2650–2658

    Article  CAS  Google Scholar 

  • Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ Pollut 158(5):1169–1181

    Article  CAS  Google Scholar 

  • Wingate JR (2008) Development of novel charcoals for the sorption and transformation of heavy metals in contaminated land. Doctoral dissertation, University of Surrey

    Google Scholar 

  • Woolson EA (1983) Emissions, cycling and effects of arsenic in soil ecosystems. In: Topics in environmental health. Elsevier, Amsterdam, Netherlands, pp 51–139

    Google Scholar 

  • Woolson EA, Axley JH, Kearney PC (1971) The chemistry and phytotoxicity of arsenic in soils: I Contaminated field soils. Soil Sci Soc Am J 35(6):938–943

    Article  Google Scholar 

  • Wysocki R, Bobrowicz P, Ułaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48):30,061–30,066

    Article  CAS  Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600

    Article  CAS  Google Scholar 

  • Xiong T, Dumat C, Pierart A, Shahid M, Kang Y, Li N, Bertoni G, Laplanche C (2016a) Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas. South China Environ Geochem Health. doi:10.1007/s10653–016–9796-2

    Google Scholar 

  • Xiong T, Austruy A, Pierart A, Shahid M (2016b) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci. doi:10.1016/j.jes.2015.08.029

    Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8(5):722–733

    Article  CAS  Google Scholar 

  • Xu J-Y, Han Y-H, Chen Y, Zhu L-J, Ma LQ (2016) Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere 144:1233–1240

    Article  CAS  Google Scholar 

  • Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85(7):1176–1181

    Article  CAS  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118(1):1–9

    Article  CAS  Google Scholar 

  • Yan X, Zhang M, Liao X, Tu S (2012) Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere 88(2):240–244

    Article  CAS  Google Scholar 

  • Yang Y, Shuzhen Z, Honglin H, Lei L, Bei W (2009) Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agric Food Chem 57:3695–3701

    Article  CAS  Google Scholar 

  • Yang M, Xiao XY, Miao XF, Guo ZH, Wang FY (2012) Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Trans Nonferrous Met Soc Chin 22:1462–1469

    Article  CAS  Google Scholar 

  • Ye WL, Wood BA, Stroud JL, Andralojc PJ, Raab A, McGrath SP, Feldmann J, Zhao FJ (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154(3):1505–1513

    Article  CAS  Google Scholar 

  • Yu Y, Zhang S, Huang H, Luo L, Wen B (2009) Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agric Food Chem 57:3695–3701

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013) Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47(12):4022–4031

    Article  CAS  Google Scholar 

  • Zhang M, Zhao M, Zhang G, Nowak P, Coen A, Tao M (2015) Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Appl Clay Sci 108:199–207

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34(22):4747–4753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khalid, S. et al. (2017). Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55423-5_4

Download citation

Publish with us

Policies and ethics