Skip to main content

Advertisement

Log in

Arsenic Metabolites and Methylation Capacity Among Individuals Living in a Rural Area with Endemic Arseniasis in Inner Mongolia, China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

More than 0.3 million individuals are subject to chronic exposure to arsenic via their drinking water in Inner Mongolia, China. To determine arsenic methylation capacity profiles for such individuals, concentrations of urinary arsenic metabolites were measured for 548 subjects using high-performance liquid chromatography and a hydride generator combined with inductively coupled plasma-mass spectrometry. Mean urinary concentrations of dimethylarsonic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenic (iAs), and total arsenic (TAs) were 200.50, 46.71, 52.96, and 300.17 μg/L, respectively. The %iAs, %DMA, and %MMA were 15.98, 69.72, and 14.29 %. Mean urinary %iAs and %MMA were higher in males, while urinary %DMA was higher in females. There was a strong positive correlation between %iAs and %MMA, with negative correlations between %iAs and %DMA, and %iAs and %MMA. In addition, %iAs and %MMA were positively associated with total arsenic in drinking water (WAs), while %DMA was negatively related with WAs. Regression analysis indicated that the primary methylation index (PMI) and secondary methylation index (SMI) generally decreased with increasing WAs. Females had a higher arsenic methylation capacity compared to males. Younger subjects had lower primary arsenic methylation capacity. However, the secondary arsenic methylation capacity was hardly affected by age. Moreover, both primary and secondary arsenic methylation capacities were negatively related to WAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kile M, Hoffman E, Rodrigues EG et al (2011) A pathway-based analysis of urinary arsenic metabolites and skin lesions. Am J Epidemiol 173:778–786

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO (World Health Organization) (2001) Arsenic and arsenic compounds. EHC 224. International Programme on Chemical Safety, WHO, Geneva

    Google Scholar 

  3. IARC (International Agency for Research on Cancer) (2004) Arsenic in drinking water. IARC Monogr Eval Carcinog Risks Hum 84:39–267

    Google Scholar 

  4. Rahman A, Vahter M, Ekström EC et al (2007) Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 165:1389–1396

    Article  PubMed  Google Scholar 

  5. Balakumar P, Kaur J (2009) Arsenic exposure and cardiovascular disorders: an overview. Cardiovasc Toxicol 9:169–176

    Article  CAS  PubMed  Google Scholar 

  6. Chung C, Hsueh Y, Bai C et al (2009) Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer Causes Control 20:1653–1661

    Article  PubMed  Google Scholar 

  7. Liu SN, Zhang L, Sun QS et al (2015) The distribution in tissues and urine of arsenic metabolites after subchronic exposure to dimethylarsinic acid (DMA(V)) in rats. Biol Trace Elem Res 156:12–21

    Google Scholar 

  8. Seow WJ, Pan WC, Kile ML et al (2012) Arsenic reduction in drinking water and improvement in skin lesions: a follow-up study in Bangladesh. Environ Health Perspect 20:1733–1738

    Google Scholar 

  9. Bhattacharjee P, Banerjee M, Giri AK (2013) Role of genomic in stability in arsenic induced carcinogenicity: a review. Environ Int 53:29–40

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Li B, Xi S et al (2013) Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12:1–10

    Article  Google Scholar 

  11. Pan WC, Seow WJ, Kile ML et al (2013) Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178:1563–1570

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Wang D, Zheng Q et al (2014) Joint effects of urinary arsenic methylation capacity with potential modifiers on arsenicosis: across-sectional study from an endemic arsenism area in Huhhot Basin, northern China. Environ Res 132:281–289

    Article  CAS  PubMed  Google Scholar 

  13. WHO (2003) Arsenic in drinking-water. Background document for preparation of WHO Guidelines for Drinking-Water Quality. World Health Organization, Geneva

    Google Scholar 

  14. Shraim A, Sekaran NC, Anuradha CD et al (2002) Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Appl Organomet Chem 16:202–209

    Article  CAS  Google Scholar 

  15. Chen Y, Wu F, Graziano JH et al (2013) Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178:372–381

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181–182:211–217

    Article  PubMed  Google Scholar 

  17. Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326

    Article  CAS  PubMed  Google Scholar 

  18. Huang YK, Tseng CH, Huang YL et al (2007) Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol Appl Pharmacol 218:135–142

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh RL, Huang YL, Shiue HS et al (2014) Arsenic methylation capacity and developmental delay in preschool children in Taiwan. Int J Hyg Environ Health 217:678–686

    Article  CAS  PubMed  Google Scholar 

  20. Sun G, Xu Y, Li X et al (2007) Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environ Health Perspect 115:48–652

    Article  Google Scholar 

  21. Huang Y, Hsueh Y, Huang Y et al (2009) Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan. Sci Total Environ 407:2608–2614

    Article  CAS  PubMed  Google Scholar 

  22. Agusa T, Trang PTK, Lan VM et al (2014) Human exposure to arsenic from drinking water in Vietnam. Sci Total Environ 488–489:562–569

    Article  PubMed  Google Scholar 

  23. De Castro BR, Caldwell KL, Jones RL et al (2014) Dietary sources of methylated arsenic species in urine of the United States population, NHANES 2003–2010. PLoS One 9(9):1–12

    Google Scholar 

  24. Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172:249–261

    Article  CAS  PubMed  Google Scholar 

  25. Styblo M, Drobna Z, Jaspers I et al (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110:767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Li B, Xu Y et al (2011) Arsenic methylation capacity and its correlation with skin lesions induced by contaminated drinking water consumption in residents of chronic arsenicosis area. Environ Toxicol 26:118–123

    Article  CAS  PubMed  Google Scholar 

  27. Xi S, Zheng Q, Zhang Q et al (2011) Metabolic profile and assessment of occupational arsenic exposure in copper and steel smelting workers in China. Int Arch Occup Environ Health 84:347–353

    Article  PubMed  Google Scholar 

  28. Huang YK, Huang YL, Hsueh YM et al (2008) Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19:829–839

    Article  PubMed  Google Scholar 

  29. Steinmaus C, Yuan Y, Kalman D et al (2010) Individual differences in arsenic metabolism and lung cancer in a case–control study in Cordoba, Argentina. Toxicol Appl Pharmacol 247:138–145

    Article  CAS  PubMed  Google Scholar 

  30. Lindberg AL, Kumar R, Goessler W et al (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu RC, Hsu KH, Chen CJ et al (2000) Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev 9:1259–1262

    CAS  PubMed  Google Scholar 

  32. Chen YC, Su H, Guo YL et al (2005) Interaction between environmental tobacco smoke and arsenic methylation ability on the risk of bladder cancer. Cancer Causes Control 16:75–81

    Article  PubMed  Google Scholar 

  33. Steinmaus C, Bates MN, Yuan Y et al (2006) Arsenic methylation and bladder cancer risk in case–control studies in Argentina and the United States. J Occup Environ Med 48:478–488

    Article  CAS  PubMed  Google Scholar 

  34. Pu YS, Yang SM, Huang YK et al (2007) Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218:99–106

    Article  CAS  PubMed  Google Scholar 

  35. Guo X, Fujino Y, Kaneko S et al (2001) Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem 222:137–140

    Article  CAS  PubMed  Google Scholar 

  36. Deng Y, Wang Y, Ma T et al (2009) Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China. Environ Geol 56:1467–1477

    Article  CAS  Google Scholar 

  37. Gamble MV, Liu X, Ahsan H et al (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113:1683–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saoudi A, Zeghnoun A, Bidondo M et al (2012) Urinary arsenic levels in the French adult population: the French National Nutrition and Health Study, 2006–2007. Sci Total Environ 433:206–215

    Article  CAS  PubMed  Google Scholar 

  39. Agusa T, Kunito T, Minh TB et al (2009) Relationship of urinary arsenic metabolites to intake estimates in residents of the Red River Delta, Vietnam. Environ Pollut 157:396–403

    Article  CAS  PubMed  Google Scholar 

  40. Hsueh YM, Ko YF, Huang YK et al (2003) Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: arsenic and selenium exposure and alcohol consumption. Toxicol Lett 137:49–63

    Article  CAS  PubMed  Google Scholar 

  41. Francesconi KA, Kuehnelt D (2004) Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 129:373–395

    Article  CAS  PubMed  Google Scholar 

  42. Ahsan H, Chen Y, Kibriya MG et al (2007) Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:1270–1278

    Article  CAS  PubMed  Google Scholar 

  43. Steinmaus C, Moore LE, Shipp M et al (2007) Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxicol Environ Health A 70:159–170

    Article  CAS  PubMed  Google Scholar 

  44. Tseng CH (2007) Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 25:11–22

    Article  Google Scholar 

  45. Lindberga AL, Ekstro EC, Nermell B et al (2008) Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res 106:110–120

    Article  Google Scholar 

  46. Fu S, Wu J, Li Y et al (2014) Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: influence of ethnicity and genetic polymorphisms. Toxicol Appl Pharmacol 274:117–123

    Article  CAS  PubMed  Google Scholar 

  47. Xi S, Sun Q, Wang F et al (2014) The factors influencing urinary arsenic excretion and metabolism of workers in steel and iron smelting foundry. J Expo Sci Environ Epidemiol 24:36–41

    Article  CAS  Google Scholar 

  48. Del Razo LM, Garca-Vargas GG, Vargas H et al (1997) Altered profile of urinary arsenic metabolites in adults with chronic arsenicism: a pilot study. Arch Toxicol 71:211–217

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work described in this paper was financially supported by the State Key Program of National Natural Science of China (Grant No. 41230749) and the National Public Welfare Sectors (Agriculture) special research fund (Project No. 201203012-6).

Conflict of Interest

The authors declare they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Yu, J., Li, H. et al. Arsenic Metabolites and Methylation Capacity Among Individuals Living in a Rural Area with Endemic Arseniasis in Inner Mongolia, China. Biol Trace Elem Res 170, 300–308 (2016). https://doi.org/10.1007/s12011-015-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0490-5

Keywords

Navigation