Skip to main content

Local Geoid Determination

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy

Definition

The geoid is an equipotential surface of the Earth’s gravity field that has the same potential value as the mean sea level at a specific epoch. Geoid determination utilizes gravity data collected on the Earth’s surface and its vicinity to compute the geoid in the most rigorous way. To distinguish from global geoid determination which requires global data coverage, local geoid determination focuses only on local areas or regions.

Introduction

This entry serves as an introduction to local geoid computations. We try to make the entry concise and easy to read from a practitioner’s viewpoint. The geodetic boundary value problems and related potential theories can be found elsewhere in this volume and are not discussed here. This entry covers the basics of the geoid theories and computation methods, with emphasis on spectral combination of several types of gravity data in local areas, a common practice...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Ågren, J., 2004. Regional Geoid Determination Methods for the Era of Satellite Gravimetry. PhD dissertation, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Ågren, J., and Wang, Y. M., 2014. Modeling error degree variances and combination parameters of the airborne and terrestrial gravity data and satellite gravity models. EGU General Assembly 2014, held 27 April–2 May, Vienna.

    Google Scholar 

  • Burša, M., Kenyon, S., Kouba, J., Šíma, Z., Vatrt, V., Vítek, V., and Vojtíšková, M., 2007. The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. Journal of Geodesy, 81(2), 103–110.

    Article  Google Scholar 

  • Dayoub, N., Edwards, S. J., and Moore, P., 2012. The Gauss–Listing geopotential value W 0 and its rate from altimetric mean sea level and GRACE. Journal of Geodesy, 86(9), 681–694.

    Article  Google Scholar 

  • Denker, H., Barriot, J. P., Barzaghi, R., Fairhead, D., Forsberg, R., Ihde, J., Kenyeres, A., Marti, U., Sarrailh, M., and Tziavos, I. N., 2009. The development of the European Gravimetric Geoid model EGG07. In Sideris, M.G. (ed.), Observing Our Changing Earth. Berlin: Springer. Vol. 133, Part 2, pp. 177–185.

    Google Scholar 

  • Featherstone, W. E., Evans, J. D., and Olliver, J. G., 1998. A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. Journal of Geodesy, 72, 154–160.

    Article  Google Scholar 

  • Featherstone, W. E., Kirby, F. J., Hirt, C., Filmer, M. S., Claessens, S. J., Brown, N. J., Hu, G., and Johnston, G. M., 2011. The AUSGeoid09 model of the Australian height datum. Journal of Geodesy, 85, 133–150.

    Article  Google Scholar 

  • Flury, J., and Rummel, R., 2009. On the geoid–quasigeoid separation in mountain areas. Journal of Geodesy, 83, 829–847.

    Article  Google Scholar 

  • Forsberg, R., 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Report of the Department of Geodetic Science and Surveying, Report No. 355.

    Google Scholar 

  • Forsberg, R., and Tscherning, C. C., 1981. The use of height data in gravity field approximation by collocation. Journal of Geophysical Research, 86(B9), 7843–7854.

    Article  Google Scholar 

  • Forsberg, R., and Tscherning C. C., 2008. An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, 2nd edn. Contract Report to JUPEM.

    Google Scholar 

  • Fotopoulos G., 2003. An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data. PhD thesis. Report No. 20185. Report of the Department of Geomatics Engineering, University of Calgary. Calgary.

    Google Scholar 

  • Haagmans, R., de Min, E., and van Gelderen, M., 1993. Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’s integral. Manuscripta Geodaetica, 18, 227–241.

    Google Scholar 

  • Heck, B., 2003. On Helmert’s methods of condensation. Journal of Geodesy, 77, 155–170.

    Article  Google Scholar 

  • Heck, B., and Grüninger, W., 1987. Modification of Stokes’s integral formula by combining two classical approaches. In Proceedings IAG Symposia on Advance in Gravity Field Modelling. XIX IUGG General Assembly, Vancouver, pp. 319–337.

    Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: Freeman.

    Google Scholar 

  • Hotine, M., 1969. Mathematical Geodesy. ESSA Monograph 2. Washington, DC: US Dept. of Commerce.

    Google Scholar 

  • Huang, J., and Véronneau, M., 2013. Canadian gravimetric geoid model 2010. Journal of Geodesy, 87, 771–790.

    Article  Google Scholar 

  • Huang, J., Véronneau, M., and Pagiatakis, S. D., 2003. On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid. Journal of Geodesy, 77, 171–181.

    Article  Google Scholar 

  • Jekeli, C., 1980. Reducing the error of geoid undulation computations by modifying Stokes’s function. Report 301, Department of Geodetic Science, Ohio State University, Columbus.

    Google Scholar 

  • Jekeli, C., 2012. Omission Error, Data Requirements, and the Fractal Dimension of the Geoid. VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia, Vol. 137, pp. 181–187.

    Google Scholar 

  • Jiang, T., and Wang, Y. M., 2015. Determination of the spectral weights of satellite models, and terrestrial and airborne gravity data for local geoid computations – case studies from GSVS11 and GSVS14 area. The Joint Assembly of AGU, CGU, GAC, and MAC, Montreal, May 2015.

    Google Scholar 

  • Kotsakis, C., and Sideris, M. G., 1999. On the adjustment of combined GPS/levelling/geoid networks. Journal of Geodesy, 73, 412–421.

    Article  Google Scholar 

  • Krarup, T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Publ. No. 44., Danish Geodetic Institute, Copenhagen.

    Google Scholar 

  • Martinec, Z., 1998. Boundary Value Problems for Gravimetric Determination of a Precise Geoid. Berlin/Heidelberg/New York: Springer. Lecture notes in Earth Sciences, 73.

    Google Scholar 

  • Martinec, Z., and Vaníček, P., 1994a. Direct topographical effect of Helmert’s condensation for a spherical approximation of the geoid. Manuscripta Geodaetica, 19, 257–268.

    Google Scholar 

  • Martinec, Z., and Vaníček, P., 1994b. The indirect effect of topography in Stokes-Helmert’s techniques for a spherical approximation of the geoid. Manuscripta Geodaetica, 19, 213–219.

    Google Scholar 

  • Martinec, Z., Matyska, C., Grafarend, E. W., and Vanícek, P., 1993. On Helmert’s 2nd condensation method. Manuscripta Geodaetica, 18, 417–421.

    Google Scholar 

  • Mayer-Gürr, T., et al., 2012. The new combined satellite only model GOCO03s. Presentation at GGHS 2012, Venice, 2012.

    Google Scholar 

  • Meissl, P., 1971. Preparations for the numerical evaluation of second-order Molodensky-type formulas. Report 163, Dept Geod Sci & Surv, Ohio State University, Columbus.

    Google Scholar 

  • Molodensky, M. S., Eremeev, V. F., and Yurkina, M. I., 1962. Methods for Study of the External Gravity Field and Figure of the Earth. Jerusalem: Israeli Program for Scientific Translations.

    Google Scholar 

  • Moritz, H., 1978. Least-squares collocation. Reviews of Geophysics, 16(3), 421–430.

    Article  Google Scholar 

  • Moritz, H., 1980. Advanced Physical Geodesy. Karlsruhe: Herbert Wichmann Verlag.

    Google Scholar 

  • Rangelova, E., Van Der Wal, W., and Sideris, M. G., 2012. How significant is the dynamic component of the North American Vertical Datum? Journal of Geodetic Science, 2(4), 281–289.

    Article  Google Scholar 

  • Rapp, R. H., 1981. Ellipsoidal corrections for geoid undulation computations using gravity anomalies in a cap. Journal of Geophysical Research, 86(B11), 10843–10848.

    Article  Google Scholar 

  • Rummel, R., and Teunissen, P. J. G., 1986. Geodetic boundary value problem and linear inference. In Holota, P. (ed.), Figure and Dynamics of the Earth, Moon and Planets. Proceedings of the International Symposium held 15–20 September, 1986 in Prague, pp. 227–264.

    Google Scholar 

  • Rummel, R., Teunissen, P. J. G., and van Gelderen, M., 1989. Uniquely and over-determined geodetic boundary value problems by least squares. Bulletin Géodésique, 63, 1–33.

    Article  Google Scholar 

  • Sacerdote, F., and Sansò, F., 1985. Overdetermined boundary value problems in physical geodesy. Manuscripta Geodaetica, 10, 195–207.

    Google Scholar 

  • Sansò F., 2013. Hilbert spaces and deterministic collocation. In Sansò, F., and Sideris, M. G. (eds.), Geoid Determination: Theory and Methods. Berlin/Heidelberg: Springer. Lecture notes in Earth System Sciences, 110.

    Google Scholar 

  • Sansò, F., and Rummel, R., 1997. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Berlin/Heidelberg: Springer-Verlag. Lecture notes in Earth Sciences, 65.

    Google Scholar 

  • Sansò, F., and Sideris, M. G. (eds.), 2013. Geoid Determination: Theory and Methods. Berlin/Heidelberg: Springer. Lecture notes in Earth System Sciences, 110.

    Google Scholar 

  • Sideris, M. G., 1995. Fourier geoid determination with irregular data. Journal of Geodesy, 70(1), 2–12.

    Article  Google Scholar 

  • Sideris, M. G., 2013. Geoid determination by FFT techniques. In Sansò and Sideris (eds.), Geoid Determination: Theory and Methods. Berlin/Heidelberg: Springer. Lecture notes in Earth System Sciences, 110.

    Google Scholar 

  • Sideris, M. G., and Schwarz, K. P., 1986. Solving Molodensky’s series by fast Fourier transform techniques. Bulletin Géodésique, 60(1), 51–63.

    Article  Google Scholar 

  • Sjöberg, L. E., 1980. Least-squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beitraege zur Geophysik, 89(5), 371–377.

    Google Scholar 

  • Sjöberg, L. E., 1981. Least squares combination of satellite and terrestrial data in physical geodesy. Annales Geophysicae, 37(1), 25–30.

    Google Scholar 

  • Sjöberg, L. E., 1984. Least squares modification of Stokes and Vening-Meinesz formulas by accounting for errors of truncation, potential coefficients and gravity data. Report No. 27, Department of Geodesy, University of Uppsala, 16 pp.

    Google Scholar 

  • Sjöberg, L. E., 1986. Comparisons o some methods of modifying Stokes’s formula. Boll Geod Sci Af, 3, 229–248.

    Google Scholar 

  • Sjöberg, L. E., 1991. Refined least-squares modification of Stokes’s formula. Manuscripta Geodaetica, 16, 367–375.

    Google Scholar 

  • Sjöberg, L. E., 2003. A general model for modifying Stokes’s formula and its least-squares solution. Journal of Geodesy, 77, 459–464.

    Article  Google Scholar 

  • Sjöberg, L. E., 2010. A strict formula for geoid-to-quasigeoid separation. Journal of Geodesy, 84(11), 699–702.

    Article  Google Scholar 

  • Sjöberg, L. E., and Eshagh, M., 2012. A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth Gravitational Model. Acta Geodaetica et Geophysica Hungarica, 47(1), 13–28.

    Article  Google Scholar 

  • Sjöberg, L. E., and Nahavandchi, H., 1999. On the indirect effect in the Stokes-Helmert method of geoid determination. Journal of Geodesy, 73, 87–93.

    Article  Google Scholar 

  • Smith, D. A., Holmes, S. A., Li, X. P., Guillaume, S., Wang, Y. M., Bürki, B., Roman, D. R., and Damiani, T. M., 2013. Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011. Journal of Geodesy, 87, 885–907.

    Article  Google Scholar 

  • Stokes, G. G., 1849. On the variation of gravity at the surface of the Earth, Translations of Cambridge Phil. Sco. 8; Coll. Works, 2, Cambridge.

    Google Scholar 

  • Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., and Poole, S., 2007. The GGM03 Mean Earth Gravity Model from GRACE. American Geophysical Union, Fall Meeting, 2007.

    Google Scholar 

  • Tscherning, C. C., 2013. Geoid determination by 3D Least-Squares collocation. In Sansò, F., and Sideris, M. G. (ed), Geoid Determination: Theory and Methods. Berlin/Heidelberg: Springer. Lecture notes in Earth System Sciences, 110, pp. 311–336.

    Google Scholar 

  • Tscherning, C. C., and Rapp, R., 1974. Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Technical report 208, Department of Geodetic Science, The Ohio State University, Ohio.

    Google Scholar 

  • Vaníček, P., and Featherstone, W. E., 1998. Performance of three types of Stokes’s kernel in the combined solution for the geoid. Journal of Geodesy, 2(12), 684–697.

    Article  Google Scholar 

  • Vaníček, P., and Kleusberg, A., 1987. The Canadian geoid – Stokesian approach. Manuscripta Geodaetica, 12(2), 86–98.

    Google Scholar 

  • Vaníček, P., and Martinec, Z., 1994. Stokes-Helmert scheme for the evaluation of a precise geoid. Manuscripta Geodaetica, 19(2), 119–128.

    Google Scholar 

  • Wang, Y. M., 1987. Numerical aspects of the solution of Molodensky’s problem by analytical continuation. Manuscripta Geodaetica, 12(4), 290–295.

    Google Scholar 

  • Wang, Y. M., 2011. Precise computation of the direct and indirect topographic effects of Helmert’s 2nd method of condensation using SRTM30 digital elevation model. Journal of Geodetic Science, 1(4), 305–312.

    Article  Google Scholar 

  • Wang, Y. M., 2012. On the omission errors due to limited grid size in geoid computations. VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy Symposia, Vol. 137, pp. 221–226

    Google Scholar 

  • Wang, Y. M., and Rapp, R. H., 1990. Terrain effects on geoid undulation computations. Manuscripta Geodaetica, 15(1), 23–29.

    Google Scholar 

  • Wang, Y. M., Saleh, J., and Roman, D. R., 2012. The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation. Journal of Geodesy, 86, 165–180.

    Article  Google Scholar 

  • Wenzel, H. G., 1982. Geoid computation by least-squares spectral combination using integral kernels. In Proceedings of the General IAG Meeting, Tokyo, pp. 438–453.

    Google Scholar 

  • Wichiencharoen, C., 1982. The indirect effect on the computation of geoidal undulations. Technical report. No. 336, The Ohio State University, Department of Geodetic Science, Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (Outside the USA)

About this entry

Cite this entry

Wang, Y.M., Huang, J., Jiang, T., Sideris, M.G. (2016). Local Geoid Determination. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics