Skip to main content

Advertisement

Log in

The Gauss–Listing geopotential value W 0 and its rate from altimetric mean sea level and GRACE

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In geopotential space, the fundamental geodetic parameter W 0 defines the Gauss–Listing geoid which can be used to best represent the Earth’s mean sea level (MSL) and hence specifies a conventional zero height level to unify vertical datums employed by mapping agencies throughout the world. Further, W 0 cannot be considered invariant as the parameter varies temporally as a direct response to sea level change and mass redistributions. This study determines W 0 and its rate, dW 0/dt, by utilizing altimetric MSL models and an independent mean dynamic topography (MDT) model to define points on the geoid. W 0 and dW 0/dt are estimated by two approaches: (i) by means of a global gravity field model (GGM) and (ii) within normal gravity field space as the geopotential value of the best fitting reference ellipsoid. The study shows that uncertainty in W 0 is mainly influenced by MDT while the choice of methodology, GGM and MSL data coverage are not significant within reason. Our estimate W 0 = 62636854.2 ± 0.2 m2 s−2 at epoch 2005.0 differs by 1.8 m2s−2 from the International Astronomical Union reference value. This study shows that, at a sub-decadal time scale, the time variation dW 0/dt stems mainly from sea level change with negligible effect from gravity field variations. dW 0/dt = (−2.70 ± 0.03) × 10−2 m2 s−2 year−1, corresponding to a MSL rise of 2.9 mm year−1, is evaluated from sea level change based on 16 years of TOPEX and Jason-1 data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res Oceans 114: C11001. doi:10.1029/2008JC005179

    Article  Google Scholar 

  • Andersen OB, Vest AL, Knudsen P (2004) KMS04 mean sea surface model and inter-annual sea level variability. In: Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29, April 2005

  • Ardalan A, Grafarend E, Kakkuri J (2002) National height datum, the Gauss–Listing geoid level value W 0 and its time variation, Baltic Sea Level project: epochs 1990.8, 1993.8, 1997.4). J Geod 76: 1–28

    Article  Google Scholar 

  • Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34: L14608. doi:10.1029/2007GL030002

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Müller A, Radej K, Vatrt V, Vojtíšková M, Vítek V (1999a) Long-term stability of geoidal geopotential FromTopex/Poseidon satellite altimetry 1993–1999. Earth Moon Planets 84: 163–176

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Radej K, Vatrt V, Vojtíšková M,Šimek J (2001) World height system specified by geopotential at tide gauge stations, vol 124. In: IAG Symposia. Springer, Berlin, pp 291–296

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007a) The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81: 103–110

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Studia Geophysica et Geodaetica 48: 493–502

    Article  Google Scholar 

  • Burša M, Kouba J, Kumar M, Müller A, Radej K, True SA, Vatrt V, Vojtíšková M (1999b) Geoidal geopotential and world height system. Studia Geophysica et Geodaetica 43: 327–337

    Article  Google Scholar 

  • Bursa M, Ouba JK, Adej KR, True SA, Atrt VV, Vjtiskova MV (1998) Monitoring geoidal potential on the basis of TOPEX/POSEIDON altimeter data. In: IAG Scientific Assembly, Rio di Janeiro. Springer, Berlin, pp 352–358

  • Burša M, Radej K, Šima Z, True SA, Vatrt V (1997) Determination of the geopotential scale factor from TOPEX/POSEIDON satellite altimetry. Studia Geophysica et Geodaetica 41: 203–216

    Article  Google Scholar 

  • Burša M, Šíma Z, Kenyon S, Kouba J, Vatrt V, Vojtíšková M (2007b) Twelve years of developments: geoidal geopotential w0 for the establishment of a world height system—present state and future. In: Proceedings of the 1st international symposium of the international gravity field service, Harita Genel Komutanligi, Istanbul, pp 121–123

  • Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev. Geophys 42: RG3001. doi:3010.1029/2003RG000139

    Article  Google Scholar 

  • Chambers DP (2006) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res C Oceans 111: C03010

    Article  Google Scholar 

  • Chambers DP, Hayes SA, Ries JC, Urban TJ (2003) New TOPEX sea state bias models and their effect on global mean sea level. J Geophys Res 108: 3305–3311

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005) Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J Geod 79: 532–539

    Article  Google Scholar 

  • Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res Solid Earth 109: B09402

    Article  Google Scholar 

  • Dorandeu J, Le Traon PY (1999) Effects of global mean atmospheric pressure variations on mean sea level changes from TOPEX/Poseidon. J Atmos Oceanic Technol 16: 1279–1283

    Article  Google Scholar 

  • Förste C, Fletcher F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer KH, Rothacher M, Reigber C (2005) A new high resolution global gravity field model derived from combination of GRACE and CHAMP mission and altimetry/gravimetry surface gravity data. In: European Geosciences Union General Assembly, Vienna, Austria (2005)

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82: 331–346

    Article  Google Scholar 

  • Haines BJ, Desai SD, Born GH (2010) The Harvest experiment: calibration of the climate data record from TOPEX/Poseidon, Jason-1 and the Ocean Surface Topography Mission. Marine Geod 33: 91–113

    Article  Google Scholar 

  • Haines BJ, Dong D, Born G, Gill S (2003) The Harvest experiment: monitoring Jason-1 and TOPEX/Poseidon from a California offshore platform. Marine Geod 26: 239–259

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman, San Francisco

    Google Scholar 

  • Hernandez F and Schaeffer P (2001) The CLS01 mean sea surface: a validation with the GSFC00.1 surface. Technical report CLS, Ramonville St Agne, 14pp

  • Hughes CW, Bingham RJ (2008) An Oceanographer’s guide to GOCE and the geoid. Ocean Sci 4: 15–29

    Article  Google Scholar 

  • Jekeli C (1981) Alternative method to smooth the Earth’s gravity field. Department of Geodetic Science and Surveying. Ohio State University, Columbus

    Google Scholar 

  • Keihm S, Zlotnicki V, Ruf C, Haines B (1998) TMR drift and scale error assessment. Report to TOPEX Project, Jet Propulsion Laboratory

  • Keihm SJ, Zlotnicki V, Ruf CS (2000) TOPEX microwave radiometer performance evaluation, 1992–1998. IEEE Trans Geosci Remote Sens 38: 1379–1386

    Article  Google Scholar 

  • Koblinsky CJ, Ray RD, Beckeley BD, Wang Y-M, Tsaoussi L, Brenner A, Williamson R (1999) NASA ocean altimeter Pathfinder project report 1: Data processing handbook, NASA/TM-1998-208605

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH (1998) The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency(NIMA) Geopotential Model EGM 96, NASA

  • Leuliette EW, Nerem RS, Mitchum GT (2004) Calibrationof TOPEX/Poseidon and Jason Altimeter Data to Construct a Continuous Record of Mean Sea Level Change. Marine Geod 27: 79–94

    Article  Google Scholar 

  • Luzum B, Capitaine N, Fienga A, Folkner W, Fukushima T, Hilton J, HohenkerkC, Krasinsky G, PetitG, PitjevaE(2011) The IAU2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Cel Mech Dynam Astron 110(4):293

    Article  Google Scholar 

  • Menemenlis D, Campin JM, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M, Zhang H (2008) ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quart Newsl 31: 13–21

    Google Scholar 

  • Moore P, Zhang Q, Alothman A (2006) Recent results on modelling the spatial and temporal structure of the Earth’s gravity field. Philos Trans Roy Soc A Math Phys Eng Sci 364(1009-1026): 364, 1009–1026

    Google Scholar 

  • Pavlis N, Kenyon S, Factor J, Holmes S (2008) Earth gravitational model 2008. In: SEG Technical Program Expanded Abstracts, pp 761–763

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71: 282–289

    Article  Google Scholar 

  • Rio M-H, Schaeffer P, Lemoine J-M, Hernandez F (2005) Estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: from global to regional studies. In: Proceedings of the GOCINA international workshop

  • Sanchez L (2007) Definition and realisation of the SIRGAS vertical reference system within a globally unified height system. Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools 130: 638–645

    Google Scholar 

  • Sanchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference frames, IAG symposia, vol 134. Springer, Berlin)

  • Schlax MG, Chelton DB (1996) Correction to “Aliased tidal errors in TOPEX/POSEIDON sea surface height data” by MG Schlax and DB Chelton. J Geophys Res Oceans 101: 18451

    Article  Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113: B08410

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33: L08402

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79: 467–478

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean Earth gravity model from GRACE. Eos Trans Am Geophys Union 88

  • Tapley BD, Bettadpur S, Chambers D, Cheng M, Choi K, Gunter B, Kang Z, Kim J, Nagel P, Ries J (2001) Gravity field determination from CHAMP using GPS tracking and accelerometer data: initial results. EOS Trans AGU 82: 47

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683): 503–505. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Tapley BD, Watkins MM, Ries JC, Davis GW, Eanes RJ, Poole SR, Rim HJ, Schutz BE, Shum CK, R S Nerem Lerch, FJ Marshall, JA Klosko, SM Pavlis NK, Williamson RG (1996) The joint gravity model 3. J Geophys Res 101(28):029–028,049

  • Torge Wolfgang (1980) Geodesy, an introduction. De Gruyter, Berlin

    Google Scholar 

  • Vaníček P, Krakiwsky EJ (1982) Geodesy: the concepts. Elsevier, Amsterdam

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103: 30205–30229

    Article  Google Scholar 

  • Zlotnicki V and Callahan P (2002) TOPEX and Jason Microwave Radiometer assessment against DMSP-SSM/I and TRMM/TMI. Paper read at Jason-1/TOPEX/Poseidon Science Working Team Meeting, 13–15 June, at Biarritz, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dayoub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayoub, N., Edwards, S.J. & Moore, P. The Gauss–Listing geopotential value W 0 and its rate from altimetric mean sea level and GRACE. J Geod 86, 681–694 (2012). https://doi.org/10.1007/s00190-012-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0547-6

Keywords

Navigation