Skip to main content

Ocean Acidification and Sea Warming-Toward a Better Comprehension of Its Consequences

  • Chapter
  • First Online:
SDG 14: Life Below Water

Abstract

Climate change, rigorously heralded more than thirty years ago as a real threat, has become the most pressing and pernicious global problem for the entire planet. In conjunction with local impacts such as fishing, eutrophication or the invasion of alien species, to give just a few examples, the acidification of the oceans and the warming of the sea began to show its effects more than twenty years ago. These signals were ignored at the time by the governing bodies and by the economic stakeholders, who now see how we must run to repair the huge inflicted damage. Today, different processes are accelerating, and the thermodynamic machine has definitely deteriorated. We see, for example, that the intensity and magnitude of hurricanes and typhoons has increased. Most models announce more devastation of flash floods and a decomposition in the water cycle, which are factors directly affecting ecosystems all over the world. Important advances are also observed in the forecasting of impacts of atmospheric phenomena in coastal areas with more and more accurate models. Rising temperatures and acidification already affect many organisms, impacting the entire food chain. All organisms, pelagic or benthic, will be affected directly or indirectly by climate change at all depths and in all the latitudes. The impact will be non-homogeneous. In certain areas it will be more drastic than in others, and the visualization of such impacts is already ongoing. Some things may be very evident, such as coral mortalities in tropical areas or in the surface waters of the Mediterranean, while others may be less visible, such as changes in microelement availability affecting plankton productivity. In fact, primary productivity in microalgae, macroalgae and phanerogams is already beginning to feel the impact of warmer, stratified and nutrient-poor waters in many parts of the planet. Nutrients are becoming less available, temperature is rising above certain tolerance limits and water movement (turbulence) may change in certain areas favoring certain species of microplankton instead of others. All these mechanisms, together with light availability (which, in principle, is not drastically changing except for the cloudiness), affect the growth of the organisms that can photosynthesize and produce oxygen and organic matter for the rest of the trophic chain. That shift in productivity completely changes the rest of the food chain. In the Arctic or Antarctic, the problem is slightly different. Life depends on the dynamics of ice that is subject to seasonal changes. But winter solidification and summer dissolution is undergoing profound changes, causing organisms that are adapted to that rhythm of ice change to be under pressure. The change is more evident in the North Pole, but is also visible in the South pole, where the sea ice cover has also dramatically changed. In the chapter there is also a mention about the general problem of the water currents and their profound change do greenhouse gas effects. The warming of the waters and their influence on the marine currents are also already affecting the different ocean habitats. The slowdown of certain processes is causing an acceleration in the deoxygenation of the deepest areas and therefore an impact on the fragile communities of cold corals that populate large areas of our planet. Many organisms will be affected in their dispersion and their ability to colonize new areas or maintain a connection between different populations. The rapid adaptations to these new changes are apparent. Nature is on its course of restart from these new changes, but in this transitional phase the complexity and interactions that have taken thousands or millions of years to form can fade away until a new normal is consolidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Sampaio, E. & Rosa, R. in Climate Action. Encyclopedia of the UN Sustainable Development Goals (eds Leal Filho, W. et al.) (Springer, 2019); https://doi.org/10.1007/978-3-319-71063-1_90-1

  3. Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).

    Article  Google Scholar 

  4. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  Google Scholar 

  5. Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    Article  Google Scholar 

  6. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Google Scholar 

  7. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  8. Rosa, R. & Seibel, B. A. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc. Natl Acad. Sci. USA 105, 20776–20780 (2008).

    Article  Google Scholar 

  9. Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).

    Article  Google Scholar 

  10. Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC, 2019).

    Google Scholar 

  11. Steckbauer, A., Klein, S. G. & Duarte, C. M. Additive impacts of deoxygenation and acidification threaten marine biota. Glob. Change Biol. 26, 5602–5612 (2020).

    Article  Google Scholar 

  12. Francis Chan, B., Barth, J. A., Kroeker, K. J., Lubchenco, J. & Menge, B. A. The dynamics and impact of ocean acidification and hypoxia. Oceanography 32, 62–71 (2019).

    Google Scholar 

  13. Tomasetti, S. J. & Gobler, C. J. Dissolved oxygen and pH criteria leave fisheries at risk. Science 368, 372–373 (2020).

    Article  Google Scholar 

  14. Gómez-Pujol L, Roig-Munar FX, Fornós JJ, Balaguer P, Mateu J (2013) Provenance-related characteristics of beach sediments around the island of Menorca, Balearic Islands (western Mediterranean). Geo-Mar Lett 33:195–208. https://doi.org/10.1007/s00367-012-0314-y

    Article  Google Scholar 

  15. Bianchi CN, Morri C, Chiantore M, Montefalcone M, Parravicini V, Rovere A (2012) Mediterranean Sea biodiversity between the legacy from the past and a future of change. In: Stambler N (ed) Life in the Mediterranean Sea: a look at habitat changes. Nova Science Publishers, New York, pp 1–55

    Google Scholar 

  16. Hamylton S (2014) Will coral islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot island, great barrier reef. PLoS One 9(4):e94067. https://doi.org/10.1371/journal.pone.0094067

    Article  Google Scholar 

  17. Cyronak T, Eyre BD (2016) The synergetic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments. Mar Chem 183:1–12

    Article  Google Scholar 

  18. De Falco G, Molinaroli E, Conforti A, Simeone S, Tonielli R (2017) Biogenic sediments from coastal ecosystems to beach–dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise. Biogeosciences 14:3191–3205. https://doi.org/10.5194/bg-14-3191-2017

    Article  Google Scholar 

  19. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  Google Scholar 

  20. Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buiam MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692. https://doi.org/10.1098/rsbl.2008.0412

    Article  Google Scholar 

  21. Donnarumma L, Lombardi C, Cocito S, Gambi MC (2014) Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr Mar Sci 15(3):498–509. https://doi.org/10.12681/mms.677

  22. Cox TE, Schenone S, Delille J, Diaz-Castaneda V, Alliouane S, Gattuso JP, Gazeau F (2015) Effects of ocean acidification on Posidonia oceanic epiphytic community and shoot productivity. J Ecol 103:1594–1609. https://doi.org/10.1111/1365-2745.12477

    Article  Google Scholar 

  23. Zunino S, Melaku Canu D, Bandelj V, Solidoro C (2017) Effects of ocean acidification on benthic organisms in the Mediterranean Sea under realistic climatic scenarios: a meta-analysis. Reg Stud Mar Sci 10:86–96. https://doi.org/10.1016/j.rsma.2016.12.011

    Article  Google Scholar 

  24. Eyre BD, Anderson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Chang 4:969–976

    Article  Google Scholar 

  25. Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, Andersson AJ (2018) Coral reefs will transition to net dissolving before end of cenatury. Science 359:908–911

    Article  Google Scholar 

  26. Yang SX, Cheng KL, Kurtz LT, Peck TR (1989) Suspension effect in potentiometry. Part Sci Technol 7:139–152

    Article  Google Scholar 

  27. Qin Y (2017) Grain-size characteristics of bottom sediments and its implications offshore between Rizhao and Lianyungang in the western South Yellow Sea. Quaternary Sci 37:1412–1428 (in Chinese with English abstract)

    Google Scholar 

  28. Boudreau BP (2000) The mathematics of early diagenesis: from worms to waves. Rev Geophys 38:389–416

    Article  Google Scholar 

  29. Baas Becking LGM, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation-reduction potentials. J Geol 68:243–284

    Article  Google Scholar 

  30. Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A, Øxnevad S, Clarke KR, Berge JA (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75

    Article  Google Scholar 

  31. Boudreau BP (1991) Modelling the sulfide-oxygen reaction and associated pH gradients in porewaters. Geochim Cosmochim Acta 55:145–159

    Article  Google Scholar 

  32. Queirós AM, Taylor P, Cowles A, Reynolds A, Widdicombe S, Stahl H (2015) Optical assessment of impact and recovery of sedimentary pH profiles in ocean acidification and carbon capture and storage research. Int J Greenh Gas Control 38:110–120

    Article  Google Scholar 

  33. Boudreau BP (1987) A steady-state diagenetic model for dissolved carbonate species and pH in the porewaters of oxic and suboxic sediments. Geochim Cosmochim Acta 51:1985–1996

    Article  Google Scholar 

  34. Cai W-J, Reimers CE (1993) The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment–water interface. Limnol Oceanogr 38:1762–1773

    Article  Google Scholar 

  35. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  Google Scholar 

  36. van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112

    Article  Google Scholar 

  37. Hallock P (2012) The FORAM index revisited: usefulness, challenges and limitations. Proc 12th Int Coral Reef Symp 1:15F_2. http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_15F_2.pdf

  38. Prazeres MF, Martins SE, Bianchini A (2012a) Assessment of water quality in coastal waters of Fernando de Noronha, Brazil: biomarker analyses in Amphistegina lessonii. J Foraminiferal Res 42:56–65

    Article  Google Scholar 

  39. Prazeres M, Uthicke S, Pandolfi JM (2015) Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc R Soc Lond B Biol Sci 282:20142782

    Google Scholar 

  40. Ross BJ, Hallock P (2014) Chemical toxicity on coral reefs: bioassay protocols utilizing benthic foraminifers. J Exp Mar Biol Ecol 457:226–235

    Article  Google Scholar 

  41. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  Google Scholar 

  42. Marangoni LFB (2014) Biomarcadores para avaliação dos efeitos do cobre no coral Mussismilia harttii (Cnidaria, Scleractinia, Mussidae). M.Sc. thesis, Universidade Federal do Rio Grande, Rio Grande, Brazil, p 86

    Google Scholar 

  43. Prazeres MF, Martins SE, Bianchini A (2012b) Impact of metal exposure in the symbiont-bearing foraminifer Amphistegina lessonii. Proc 12th Int Coral Reef Symp 1:15F_1. http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_15F_1.pdf

  44. Wernberg T, Smale DA, Thomsen MS (2012) A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob Chang Biol 18:1491–1498

    Article  Google Scholar 

  45. Ban SS, Graham NAJ, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Glob Chang Biol 20:681–697

    Article  Google Scholar 

  46. Borowitzka MA, Larkum AWD (1976a) Calcification in the green alga Halimeda II The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. J Exp Bot 27:864–878

    Article  Google Scholar 

  47. Böhm L (1978) Application of the 45Ca tracer method for determination of calcification rates in calcareous algae: effect of calcium exchange and differential saturation of algal calcium pools. Mar Biol 47:9–14

    Article  Google Scholar 

  48. Tambutté E, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Article  Google Scholar 

  49. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2011) Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar Biol Res 7:565–575

    Article  Google Scholar 

  50. Gazeau F, Urbini L, Cox T, Alliouane S, Gattuso J (2015) Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. Mar Ecol Prog Ser 527:1–12

    Article  Google Scholar 

  51. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Nat Acad Sci 105:17442–17446

    Article  Google Scholar 

  52. Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  53. Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100

    Article  Google Scholar 

  54. Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae: warming, high CO2 and corallines. J Phycol 48:32–39

    Article  Google Scholar 

  55. Vogel N, Meyer F, Wild C, Uthicke S (2015a) Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar Ecol Prog Ser 521:49–61

    Article  Google Scholar 

  56. Vogel N, Fabricius KE, Strahl J, Noonan SHC, Wild C, Uthicke S (2015b) Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps: Halimeda growing at CO2 seeps. Limnol Oceanogr 60:263–275

    Article  Google Scholar 

  57. IPCC (2013) Climate change 2013: The physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  58. Kamenos NA, Burdett HL, Aloisio E, Findlay HS, Martin S, Longbone C, Dunn J, Widdicombe S, Calosi P (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Change Biol 19:3621–3628

    Article  Google Scholar 

  59. Chou W-C, Liu P-J, Chen Y-H, Huang W-J (2020) Contrasting changes in diel variations of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification. Front Mar Sci 7:3

    Article  Google Scholar 

  60. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365–365

    Article  Google Scholar 

  61. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04

    Google Scholar 

  62. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of Anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  Google Scholar 

  63. Orr JC, Fabry JC, Aumont O, et al. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. https://doi.org/10.1038/nature04095

    Article  Google Scholar 

  64. Feely RA, Orr J, Fabry VJ, Kleypas JA, Sabine CL, Langdon C (2013) Present and future changes in seawater chemistry due to ocean acidification. In: Mcpherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. American Geophysical Union, Washington, D.C., pp 175–188

    Google Scholar 

  65. Millero FJ, Woosley R, Ditrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72

    Article  Google Scholar 

  66. Kawahata H, Nomura R, Matsumoto K, Nishi H (2015) Linkage of deep sea rapid acidification process and extinction of benthic foraminifera in the deep sea at the Paleocene/Eocene transition. Island Arc 24:301–316

    Article  Google Scholar 

  67. Gupta LP, Kawahata H, Takeuchi M, Ohta H, Ono Y (2005) Temperature and pH dependence of some metals leaching from fly ash of municipal solid waste. Resour Geol 55:357–372

    Article  Google Scholar 

  68. Senanayake G (2011) Acid leaching of metals from deep-sea manganese nodules—a critical review of fundamentals and applications. Miner Eng 24:1379–1396

    Article  Google Scholar 

  69. Kashiwabara T, Takahashi Y, Tanimizu M, Usui A (2011) Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides. Geochim Cosmochim Acta 75:5762–5784

    Article  Google Scholar 

  70. Kashiwabara T, Takahashi Y, Marcus MA, Uruga T, Tanida H, Terada Y, Usui A (2013) Tungsten species in natural ferromanganese oxides related to its different behavior from molybdenum in oxic ocean. Geochim Cosmochim Acta 106:364–378

    Article  Google Scholar 

  71. Millero FJ (2013) Chemical oceanography. CRC Press, New York

    Google Scholar 

  72. De Orte MR, Lombardi AT, Sarmiento AM, Basallote MD, Rodriguez-Romero A, Riba I, Del Valls A (2014) Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar Environ Res 96:136–144

    Article  Google Scholar 

  73. Wang Q, Kawahata H, Manaka T, Yamaoka K, Suzuki A (2017) Potential influence of ocean acidification on deep-sea Fe–Mn nodules: results from leaching experiments. Aquat Geochem 23:233–246

    Article  Google Scholar 

  74. Li YH (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240

    Article  Google Scholar 

  75. European Communities (EC) (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L330:0032–0054. http://ec.europa.eu/environment/water/water-drink/legislation_en.html. Accessed 24 July 2018

  76. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization Press. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/. Accessed 24 July 2018

  77. United States Environmental Protection Agency (USEPA) (2012) Edition of the drinking water standards and health advisories. Washington, DC. https://www.epa.gov/dwstandardsregulations. Accessed 24 July 2018

  78. Gobler CJ, DePasquale EL, Griffith AW, Baumann H. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE. 2014;9:e83648.

    Article  Google Scholar 

  79. Wu F, Cui S, Sun M, Xie Z, Huang W, Huang X, Liu L, Hu M, Lu W, Wang Y. Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus. Sci Total Environ. 2018;624:820–30.

    Article  Google Scholar 

  80. Kong H, Jiang X, Clements JC, Wang T, Huang X, Shang Y, Chen J, Hu M, Wang Y. Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel Mytilus edulis. Mar Environ Res. 2019;145:73–80.

    Article  Google Scholar 

  81. Kinsey DW (1977) Seasonality and zonation in coral reef productivity and calcification. Proc Int Coral Reef Symp 2:383–388

    Google Scholar 

  82. Crossland CJ (1981) Seasonal growth of Acropora cf. formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). Proc Fourth Int Coral Reef Symp 1:663–667

    Google Scholar 

  83. Smith SV (1981) The Houtman Abrolhos Islands: Carbon metabolism of coral reefs at high latitude. Limnol Oceanog 26:612–621

    Article  Google Scholar 

  84. Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530

    Article  Google Scholar 

  85. Manzello DP (2010) Ocean acidification hotspots: Spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol Oceanog 55:239–248

    Article  Google Scholar 

  86. Gray SE, DeGrandpre MD, Langdon C, Corredor JE (2012) Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Glob Biochem Cycles 26:GB3012

    Google Scholar 

  87. Albright R, Langdon C, Anthony KRN (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758

    Article  Google Scholar 

  88. Venti A, Andersson A, Langdon C (2014) Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform. Coral Reefs 33:979–997

    Article  Google Scholar 

  89. Chen, C. T. A. & Wang, S. L. Carbonate chemistry of the sea of Japan. J. Geophys. Res.-Oceans 100, 13737–13745 (1995).

    Google Scholar 

  90. Park, G.-H., Lee, K. & Tishchenko, P. Sudden, considerable reduction in recent uptake of anthropogenic CO2 by the East/Japan Sea. Geophys. Res. Lett. 35, L23611 (2008).

    Article  Google Scholar 

  91. Park, G.-H. et al. Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Glob. Biogeochem. Cycle, 20, BG4013 (2006).

    Google Scholar 

  92. Kim, T. W. et al. Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model. Glob. Biogeochem. Cycle 24, GB3005 (2010).

    Google Scholar 

  93. Mathis, J. T. et al. Ocean acidification risk assessment for Alaska’s fishery sector. Prog. Oceanogr. 136, 71–91 (2015).

    Article  Google Scholar 

  94. Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Chang. 5, 207–214 (2015).

    Article  Google Scholar 

  95. Long, W. C., Swiney, K. M. & Foy, R. J. Effects of high pCO2 on Tanner crab reproduction and early life history, Part II: Carryover effects on larvae from oogenesis and embryogenesis are stronger than direct effects. ICES J. Mar. Sci. 73, 836–848 (2016).

    Article  Google Scholar 

  96. Swiney, K. M., Long, W. C. & Foy, R. J. Effects of high pCO2 on Tanner crab reproduction and early life history-Part I: Long-term exposure reduces hatching success and female calcification, and alters embryonic development. ICES J. Mar. Sci. 73, 825–835 (2016).

    Article  Google Scholar 

  97. Williams, C. R. et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob. Chang. Biol. 1–15 (2018).

    Google Scholar 

  98. Evans, W., Mathis, J. T. & Cross, J. N. Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences 11, 365–379 (2014).

    Article  Google Scholar 

  99. Feely, R. A. et al. Winter−summer variations of calcite and Aragonite saturation in the Northeast Pacific. Mar. Chem. 25, 227–241 (1988).

    Article  Google Scholar 

  100. Feely, R. A. & Chen, C. T. A. The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the Northeast Pacific. Geophys. Res. Lett. 9, 1294–1297 (1982).

    Article  Google Scholar 

  101. Byrne, R. R. H., Mecking, S., Feely, R. R. A. & Liu, X. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys. Res. Lett. 37, 1–5 (2010).

    Article  Google Scholar 

  102. Hamme, R. C. et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37, 1–5 (2010).

    Article  Google Scholar 

  103. Hauri, C. et al. A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences 17, 3837–3857 (2020).

    Article  Google Scholar 

  104. Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A. & Tjiputra, J. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12, 1285–1298 (2015).

    Article  Google Scholar 

  105. Carter, B. R. et al. Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Ship-based Hydrographic Investigations Program sections P16 and P02. Global Biogeochem. Cycles 31, 306–327 (2017).

    Google Scholar 

  106. E. P. Chassignet and X. Xu, “Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability,” J. Phys. Oceanogr., No. 47, 1999–2021 (2017).

    Google Scholar 

  107. A. I. Mizyuk, M. V. Senderov, G. K. Korotaev, and A. S. Sarkisyan, “Features of the horizontal variability of the sea surface temperature in the Western Black Sea from high resolution modeling,” Izv., Atmos. Ocean. Phys. 52, 570–578 (2016).

    Google Scholar 

  108. A. L. Ponte and P. Klein, “Reconstruction of the upper ocean 3D dynamics from high-resolution sea surface height,” Ocean Dynamics 63, 777–791 (2013).

    Article  Google Scholar 

  109. G. Lapeyre and P. Klein, “Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory,” J. Phys. Oceanogr. 36, 165–176 (2006).

    Article  Google Scholar 

  110. M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications (SIAM, Philadelphia, 2016).

    Book  Google Scholar 

  111. V. P. Shutyaev, “Methods for observation data assimilation in problems of physics of atmosphere and ocean,” Izv., Atmos. Ocean. Phys. 55, 17–31 (2019).

    Google Scholar 

  112. A. Caya, J. Sun, and C. Snyder, “A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation,” Mon. Weather Rev. 133 (11), 3081–3094 (2005).

    Article  Google Scholar 

  113. E. Kalnay, H. Li, T. Miyoshi, S. -C. Yang, and J. Ballabrera-Poy, “4D-Var or ensemble Kalman filter?” Tellus A 59, 758–773 (2007).

    Article  Google Scholar 

  114. D. Fairbairn, S. R. Pring, A. C. Lorenc, and I. Roulstone, “A comparison of 4DVar with ensemble data assimilation methods,” Q. J. R. Meteorol. Soc. 140, 281–294 (2014).

    Article  Google Scholar 

  115. V. I. Agoshkov, V. M. Ipatova, V. B. Zalesny, E. I. Parmuzin, and V. P. Shutyaev, “Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution,” Izv., Atm-os. Ocean. Phys. 46 (6), 677–712 (2010).

    Google Scholar 

  116. V. B. Zalesny, V. I. Agoshkov, V. P. Shutyaev, F. Le Dimet, and V.O. Ivchenko, “Numerical modeling of ocean hydrodynamics with variational assimilation of observational data,” Izv., Atmos. Ocean. Phys. 52, 431–442 (2016).

    Google Scholar 

  117. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Numerical algorithm for variational assimilation of sea surface temperature data,” Comput. Math. Math. Phys. 48 (8), 1293–1312 (2008).

    Article  Google Scholar 

  118. V. I. Agoshkov, V. P. Shutyaev, E. I. Parmuzin, N. B. Zakharova, T. O. Sheloput, and N. R. Lezina, “Variational assimilation of observation data in a mathematical model of Black Sea dynamics,” Morsk. Gidrofiz. Zh., No. 6, 15–24 (2019).

    Google Scholar 

  119. Henry LA, Roberts JM (2007) Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep Sea Res I 54:654–672

    Article  Google Scholar 

  120. van Soest RWM, Cleary DFR, de Kluijver MJ, Lavaleye MSS, Maier C, van Duyl FC (2007) Sponge diversity and community composition in Irish bathyal coral reefs. Contrib Zool 76:121–142

    Article  Google Scholar 

  121. Mastrototaro F, D’Onghia G, Corriero G, Matarrese A, Maiorano P, Panetta P, Gherardi M, Longo C, Rosso A, Sciuto F, Sanfilippo R, Gravili C, Boero F, Taviani M, Tursi A (2010) Biodiversity of the white coral bank off Cape Santa Maria di Leuca (Mediterranean Sea): an update. Deep Sea Res Part II 57:412–430

    Article  Google Scholar 

  122. Morigi C, Sabbatini A, Vitale G, Pancotti I, Gooday AJ, Duineveld GCA, De Stigter HC, Danovaro R, Negri A (2012) Foraminiferal biodiversity associated with cold-water coral carbonate mounds and open slope of SE Rockall Bank (Irish continental margin—NE Atlantic). Deep Sea Res Part I 59:54–71

    Article  Google Scholar 

  123. Schöttner S, Wild C, Hoffmann F, Boetius A, Ramette A (2012) Spatial scales of bacterial diversity in cold-water coral reef ecosystems. PLoS One 7:e32093

    Article  Google Scholar 

  124. Rogers AR (2004) The biology, ecology and vulnerability of deep-water coral reefs. International Union for Conservation of Nature & Natural Resources, Cambridge, p 11

    Google Scholar 

  125. Larsson AI, Purser A (2011) Sedimentation on the cold-water coral Lophelia pertusa: cleaning efficiency from natural sediments and drill cuttings. Mar Pollut Bull 62:1159–1168

    Article  Google Scholar 

  126. Purser A, Thomsen L (2012) Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems. Mar Pollut Bull 64:2309–2316

    Article  Google Scholar 

  127. Titschack J, Baum D, De Pol Holz R, Lopéz Correa M, Forster N, Flögel S, Hebbeln D, Freiwald A (2015) Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs. Sedimentology 62:1873–1898

    Article  Google Scholar 

  128. Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia pertusa around the Feroe Islands and the relation to internal tidal mixing. Sarsia 77:157–171

    Article  Google Scholar 

  129. Reed JK (2002) Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471:57–69

    Article  Google Scholar 

  130. Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts J (2004) Cold-water coral reefs. UNEP-WCMC Biodiversity series 22, p 84

    Google Scholar 

  131. Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol Prog Ser 277:13–23

    Article  Google Scholar 

  132. Duineveld GCA, Lavaleye MSS, Bergman MJN, De Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near bottom particle supply and current regime. Bull Mar Sci 81:449–467

    Google Scholar 

  133. White M, Mohn C, de Stigter H, Mottram G (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, The Netherlands, pp 503–514

    Chapter  Google Scholar 

  134. Mienis F, Duineveld GCA, Davies AJ, Ross SW, Seim H, Bane J, Van Weering TCE (2012) The influence of nearbed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res Part I 60:32–45

    Article  Google Scholar 

  135. Hebbeln D, Wienberg C, Wintersteller P, Freiwald A, Becker M, Beuck M, Dullo C, Eberli G, Glogowski S, Matos L, Forster N, Reyes-Bonilla H, Taviani M (2014) Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11:1799–1815

    Article  Google Scholar 

  136. Purdy EG, Bertram GT (1993) Carbonate concepts from the Maldives, Indian Ocean. Am Assoc Pet Geol Stud Geol 34:56

    Google Scholar 

  137. Aubert O, Droxler AW (1992) General Cenozoic evolution of the Maldives carbonate system (equatorial Indian Ocean). Bull Centre Rech Explor Prod Elf Aquitaine 16:113–136

    Google Scholar 

  138. Betzler C, Hübscher C, Lindhorst S, Reijmer JJG, Römer M, Droxler AW, Fürstenau J, Lüdmann T (2009) Monsoonal-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology 37:867–870

    Article  Google Scholar 

  139. Betzler C, Lüdmann T, Hübscher C, Fürstenau J (2013) Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean). Sediment Geol 290:126–137

    Article  Google Scholar 

  140. Fürstenau J, Lindhorst S, Betzler C, Hübscher C (2010) Submerged reef terraces of the Maldives (Indian Ocean). Geo-Mar Lett 30:511–515

    Article  Google Scholar 

  141. Taylor PD (1979) Palaeoecology of the encrusting epifauna of some British Jurassic bivalves. Palaeogeogr Palaeoclimatol Palaeoecol 28:241–262

    Article  Google Scholar 

  142. Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176

    Article  Google Scholar 

  143. Flögel S, Dullo WC, Pfannkuche O, Kiriakoulakis K, Rüggeberg A (2014) Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Res II 99:19–26

    Article  Google Scholar 

  144. Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  Google Scholar 

  145. Federal Emergency Management Agency (2014) Department of homeland security: region ii storm surge project—joint probability analysis of hurricane and extratropical flood hazards

    Google Scholar 

  146. Zhang W, Hong H, Shang S, Chen D, Chai F (2007) A two-way nested coupled tide-surge model for the Taiwan Strait. Cont Shelf Res 27:1548–1567

    Article  Google Scholar 

  147. Xiamen Water Conservancy Bureau, Xiamen Bureau of Statistics (2013) Bulletin of first national census for water in Xiamen. China WaterPower Press, Beijing

    Google Scholar 

  148. Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog Oceanogr 63:1–28. https://doi.org/10.1016/j.pocean.2004.09.001

    Article  Google Scholar 

  149. Omstedt A, Elken J, Lehmann A, Leppäranta M, Meier H E M, Myrberg K, Rutgersson A (2014) Progress in physical oceanography of the Baltic Sea during the 2003–2014 period. Prog Oceanogr 128:139–171. https://doi.org/10.1016/j.pocean.2014.08.010

    Article  Google Scholar 

  150. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  151. Gustafsson N, Nyberg L, Omstedt A (1998) Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Mon Weather Rev 126:2822–2846

    Article  Google Scholar 

  152. Hagedorn R, Lehmann A, Jacob D (2000) A coupled high resolution atmosphere–ocean model for the BALTEX region. Meteorol Z 9:7–20

    Article  Google Scholar 

  153. Schrum C, Hubner U, Jacob D, Podzun R (2003) A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Clim Dyn 21:131–151

    Article  Google Scholar 

  154. Lehmann A, Lorenz P, Jacob D (2004) Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophys Res Lett 31(21):L21308. https://doi.org/10.1029/2004GL020830

    Article  Google Scholar 

  155. Blackmon M B, Boville B, Bryan F, Gent P, Kiehl J, Moritz R, Hurrel J (2001) The community climate system model. Bull Am Meteorol Soc 82(11):2357–2376

    Article  Google Scholar 

  156. Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123. https://doi.org/10.1175/1520-0469(1972)029%3c1109:DOGSCC%3e2.0.CO;2

    Article  Google Scholar 

  157. Hendon HH, Salby ML (1994) the life cycle of the Madden–Julian oscillation. J Atmos Sci 51:2225–2237. https://doi.org/10.1175/1520-0469(1994)051%3c2225:TLCOTM%3e2.0.CO;2

    Article  Google Scholar 

  158. Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003. https://doi.org/10.1029/2004RG000158

  159. Alvarez MS, Vera CS, Kiladis GN et al (2016) Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Clim Dyn 46:245. https://doi.org/10.1007/s00382-015-2581-6

    Article  Google Scholar 

  160. Alvarez MS, Vera CS, Kiladis GN (2017) MJO modulating the activity of the leading mode of intraseasonal variability in South America. Atmosphere 8(12):232. https://doi.org/10.3390/atmos8120232

    Article  Google Scholar 

  161. Barreiro M, Sitz L, de Mello S, Fuente Franco R, Renom M, Farneti R (2018) Modeling the role of Atlantic air-sea interaction in the impact of MJO on South American climate. Int J Climatol 39(2):1104–1116

    Article  Google Scholar 

  162. Vera CS, Alvarez MS, Gonzalez PLM, Kiladis GN, Liebmann B (2017) Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn. https://doi.org/10.1007/s00382-017-3994-1

    Article  Google Scholar 

  163. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  164. V. V. Efimov and V. S. Barabanov, “Anomalies of the Black Sea surface temperature and modeling of intense cold anomaly formation in September 2014,” Izv., Atmos. Ocean. Phys. 53 (3), 343–351 (2017).

    Google Scholar 

  165. V. V. Efimov and O. I. Komarovskaya, “Spatial structure and recurrence of large-scale temperature anomalies of the sea surface temperature in the Black Sea,” Oceanology (Engl. Transl.) 58 (2), 155–163 (2018).

    Google Scholar 

  166. A. E. Anisimov, D. A. Yarovaya, and V. S. Barabanov, “Reanalysis of atmospheric circulation for the Black Sea–Caspian region,” Phys. Oceanogr., No. 4, 13–25 (2015). https://doi.org/10.22449/1573-160X-2015-4-13-25

  167. R. W. Reynolds, T. M. Smith, C. Liu, et al., “Daily high resolution blended analyses for sea surface temperature,” J. Clim. 20 (22), 5473–5496 (2007).

    Article  Google Scholar 

  168. S. G. Demyshev, V. A. Ivanov, N. V. Markova, and L. V. Cherkesov, “Recovery of the current field in the Black Sea from an eddy-resolving model with assimilation of climatic fields of temperature and salinity,” in Ecological Safety of Coastal and Shelf Regions and Integrated Studies of Shelf Resources (EKOSI-Gidrofizika, Sevastopol, 2007), vol. 15, pp. 215–226.

    Google Scholar 

  169. S. G. Demyshev, V. A. Ivanov, and N. V. Markova, “Analysis of the Black Sea climatic fields below the main pycnocline obtained on the basis of assimilation of the archival data on temperature and salinity in the numerical hydrodynamic model,” Phys. Oceanogr. 19 (1), 1–12 (2009). https://doi.org/10.1007/s11110-009-9034-x

    Article  Google Scholar 

  170. Bastos, A., Running, S. W., Gouveia, C., & Trigo, R. M. (2013). The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. Journal of Geophysical Research: Biogeosciences, 118(3), 1247–1255. https://doi.org/10.1002/jgrg.20100 .

    Article  Google Scholar 

  171. ManzanoSarabia, M., Salinas Zavala, C. A., Kahru, M., LluchCota, S. E., & González Becerril, A. (2008). The impact of the 1997–1999 warm-SST and low-productivity episode on fisheries in the southwestern Gulf of Mexico. Hydrobiologia, 610(1), 257–267. https://doi.org/10.1007/s10750-008-9440-y .

    Article  Google Scholar 

  172. Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444(7120), 752–755. https://doi.org/10.1038/nature05317 .

    Article  Google Scholar 

  173. Polovina, J. J., Howell, E. A., & Abecassis, M. (2008). Ocean’s least productive waters are expanding. Geophysical Research Letters. https://doi.org/10.1029/2007GL031745 .

    Article  Google Scholar 

  174. Behrenfeld, M. J., & Falkowski, P. G. (1997). A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42, 1479–1491. https://doi.org/10.4319/lo.1997.42.7.1479 .

    Article  Google Scholar 

  175. Ying, J., Huang, P., & Huang, R. H. (2016). Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Advances in Atmospheric Sciences, 33(4), 433–441.

    Article  Google Scholar 

  176. Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., et al. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921–930.

    Article  Google Scholar 

  177. Qiao, F., Song, Z., Bao, Y., et al. (2013). Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9), 4514–4524.

    Article  Google Scholar 

  178. Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., & Ma, J. (2004). Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophysical Research Letters. https://doi.org/10.1029/2004GL019824 .

    Article  Google Scholar 

  179. Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., et al. (2008). Improvements to the community land model and their impact on the hydrological cycle. Journal of Geophysical Research, 113(G1), G01021.

    Article  Google Scholar 

  180. Neumann T (2000) Towards a 3D-ecosystem model in the Baltic Sea. J Mar Syst 25:405–419

    Article  Google Scholar 

  181. Maar M, Moller EF, Larsen J, Madsen KS, Wan Z, She J, Jonasson L, Neumann T (2011) Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea. Ecol Model 222:1696–1711

    Article  Google Scholar 

  182. Nerger L, Janjić T, Schröter J, Hiller W (2012b) A unification of ensemble square root Kalman filters. Mon Wea Rev 140:2335–2345

    Article  Google Scholar 

  183. Nerger L, Hiller W, Schröter J (2005) A comparison of error subspace Kalman filters. Tellus 57A:715–735

    Article  Google Scholar 

  184. Nerger L, Hiller W (2013) Software for ensemble-based data assimilation systems - implementation strategies and scalability. Comput Geosci 55:110–118

    Article  Google Scholar 

  185. Barth A, Alvera-Azcarate A, Beckers JM, Rixen M, Vandenbulcke L (2007) Multigrid state vector for data assimilation in a two-way nested model of the Ligurian Sea. J Mar Syst 65:41–59

    Article  Google Scholar 

  186. Lorenz, J. R. (1863). Physikalische Verhältnisse und Vertailung der Organismen im Quarnerischen Golfe. Wien: Hofund Staatsdruckerei.

    Google Scholar 

  187. Vilibić, I., Šepić, J., & Proust, N. (2013). Weakening of thermohaline circulation in the Adriatic Sea. Climate Research, 55, 217–225.

    Article  Google Scholar 

  188. Grbec, B., Morović, M., Beg Paklar, G., Kušpilić, G., Matijević, S., Matić, F., et al. (2009). The relationship between the atmospheric variability and productivity in the Adriatic Sea area. Journal of the Marine Biological Association of the UK, 89, 1549–1558.

    Article  Google Scholar 

  189. Liu, Y., Weisberg, R. H., Lenes, J. M., Zheng, L., Hubbard, K., & Walsh, J. J. (2016). Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. Journal of Geophysical Research Oceans. https://doi.org/10.1002/2016jc011938 .

    Article  Google Scholar 

  190. Buljan, M., & Zore-Armanda, M. (1976). Oceanographic properties of the Adriatic Sea. Oceanography and Marine Biology Annual Review, 14, 11–98.

    Google Scholar 

  191. Vigo, M. I., Sánchez-Reales, J. M., Trottini, M., & Chao, B. F. (2011). Mediterranean Sea level variations: Analysis of the satellite altimetric data, 1992–2008. Journal of Geodynamics,52(3), 271–278.

    Article  Google Scholar 

  192. Calafat, F. M., Chambers, D. P., & Tsimplis, M. N. (2012). Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2012JC008285 .

    Article  Google Scholar 

  193. Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters,40(3), 553–557.

    Article  Google Scholar 

  194. Tsimplis, M. N., Calafat, F. M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. (2013). The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research: Oceans. https://doi.org/10.1002/jgrc.20078 .

    Article  Google Scholar 

  195. Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., & Larnicol, G. (2016). Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Climate Dynamics,47(9–10), 2851–2866.

    Article  Google Scholar 

  196. Preisendorfer, R. W., & Mobley, C. D. (1988). Principal component analysis in meteorology and oceanography (Vol. 425). Amsterdam: Elsevier.

    Google Scholar 

  197. von Storch, H., & Zwiers, F. W. (1999). Statistical analysis in climate research (p. 484). Cambridge: Cambridge University Press.

    Google Scholar 

  198. Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., & Terradas, J. (2008). Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Global and Planetary Change. https://doi.org/10.1016/j.gloplacha.2008.06.005 .

    Article  Google Scholar 

  199. Wu Y, Pelot RP, Hilliard C (2009) The influence of weather conditions on the relative incident rate of fishing vessels. Risk Anal 29:985–999. https://doi.org/10.1111/j.1539-6924.2009.01217.x

    Article  Google Scholar 

  200. Köppen W (1884) Die wärmezonen der erde, nach der dauer der heissen, gemässigten und kalten zeit und nach der wirkung der wärme auf die organische welt betrachtet (The thermal zones of the Earth according to the duration of hot, moderate and cold periods and of the impact of heat on the organic world). Meteorol Z 1:215–226

    Google Scholar 

  201. Sando AB, Nilsen JEO, Gao Y, Lohmann K (2010) Importance of heat transport and local air-sea heat fluxes for Barents Sea climate variability. J Geophy Res 115(C07):013. https://doi.org/10.1029/2009JC005884

    Article  Google Scholar 

  202. Arthun M, Eldevik T, Smedsrud LH, Skagseth O, Ingvaldsen RB (2012) Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J Clim 25:4736–4743. https://doi.org/10.1175/JCLI-D-11-00466.1

    Article  Google Scholar 

  203. Ivanov VV, Alexeev VA, Repina I, Koldunov NV, Smirnov A (2012) Tracing Atlantic Water signature in the Arctic sea ice cover east of Svalbard. Adv Meteorol. https://doi.org/10.1155/2012/201818

    Article  Google Scholar 

  204. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R, Kwok R, Sundfjord A, Morison J, Rember R, Yulin A (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356(6335):285–291. https://doi.org/10.1126/science.aai8204

    Article  Google Scholar 

  205. Sando AB, Gao Y, Langehaug R (2014a) Poleward ocean heat transports, sea ice processes, and Arctic sea ice variability in NorESM1-M simulations. J Geophys Res 119:2095–2108. https://doi.org/10.1002/2013JC009435

    Article  Google Scholar 

  206. Li D, Zhang R, Knutson TR (2017) On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline. Nat Commun 8:14991. https://doi.org/10.1038/ncomms14991

    Article  Google Scholar 

  207. Wang Q, Danilov S, Sidorenko D, Timmermann R, Wekerle C, Wang X, Jung T, Schröter J (2014) The finite element sea ice-ocean model (FESOM) vol 1.4: formulation of an ocean general circulation model. Geosci Model Dev 7:663–693. https://doi.org/10.5194/gmd-7-663-2014

    Article  Google Scholar 

  208. Sein DV, Danilov S, Biastoch A, Durgadoo JV, Sidorenko D, Harig S, Wang Q (2016) Designing variable ocean model resolution based on the observed ocean variability. J Adv Model Earth Syst 8(2):904–916. https://doi.org/10.1002/2016MS000650

    Article  Google Scholar 

  209. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM): the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446. https://doi.org/10.1002/jame.20023

    Article  Google Scholar 

  210. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res. https://doi.org/10.1029/2009JC005312

    Article  Google Scholar 

  211. Wadley M, Bigg G (2002) Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic Circulation: an ocean modelling study. QJ R Meteorol Soc 128:2187–2203

    Article  Google Scholar 

  212. Hu A, Meehl GA, Han W, Otto-Bliestner B, Abe-Ouchi A (2015) Effects of the bering strait closure on AMOC and global climate under different background climates. Prog Oceanogr 132:174–196. https://doi.org/10.1016/j.pocean.2014.02.004

    Article  Google Scholar 

  213. Farmer J, Cronin T, de Vernal A, Dwyer G, Keigwin L, Thunell R (2011) Western Arctic ocean temperature variability during the last 8000 years. Geophys Res Lett. https://doi.org/10.1029/2011GL049714

    Article  Google Scholar 

  214. de Vernal A, Hillaire-Marcel C, Rochon A, Frechette B, Henry M, Solignac S, Bonnet S (2013) Dinocyst-based reconstructions of sea ice cover concentration during the holocene in the Arctic Ocean, the Northern North Atlantic Ocean and its adjacent seas. Quat Sci Rev 79:111–121

    Article  Google Scholar 

  215. Stein R, Fahl K, Schade I, Manerung A, Wassmuth S, Niessen F, Nam S-I (2017) Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean). J Quat Sci 32:362–379

    Article  Google Scholar 

  216. Belkin IM, Levitus S, Antonov J, Malmberg S-A (1998) ‘Great Salinity Anomalies’ in the North Atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  217. Woodgate RA, Weingartner T, Lindsay R (2010) The 2007 Bering Strait ocean heat flux and anomalous Arctic Sea-Ice retreat. Geophys Res Lett 37:L01602. https://doi.org/10.1029/2009GL041621

    Article  Google Scholar 

  218. Hu A, Meehl GA, Otto-Bliesner BL, Waelbroeck C, Han W, Loutre M-F, Lambeck K, Mitrovica JX, Rosenblom N (2010) Influence of Bering strait flow and North Atlantic circulation on glacial sea level changes. Nat Geosci 3:118–121. https://doi.org/10.1038/NGEO729

    Article  Google Scholar 

  219. Yang Q, Dixon TH, Myers PG, Bonin J, Chambers D, van den Broeke MR, Ribergaard MH, Mortensen J (2015) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Commun Nat. https://doi.org/10.1038/ncomms10525

    Article  Google Scholar 

  220. England J, Atkinseon N, Bednarski J, Dyke AS, Hodgson DA, Cofaigh CO (2006) The innuitian ice sheet: configuration, dynamics and chronology. Quat Sci Rev 25:689–703. https://doi.org/10.1016/j.quascirev.2005.08.007

    Article  Google Scholar 

  221. Madec G, the NEMO Team (2008) NEMO Ocean Engine. Notes de Pole de modelisation, 27, ISSN No 1288–1619. Institut Pierre-Simon Palace (IPSL)

    Google Scholar 

  222. Barnier B, Brodeau L, Le Sommer L, Molines J-M, Penduff T, Theetten S, Treguier A-M et al (2007) Eddy-permitting Ocean circulation hindcasts over past decades. Clivar Exchanges 42:8–10

    Google Scholar 

  223. Griffies SM, Biastoch A, Böning CB, Bryan F, Danabasoglu G et al (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model V26(1–2):1–46. https://doi.org/10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  224. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res 111:C11010. https://doi.org/10.1029/2005JC003424

    Article  Google Scholar 

  225. Cucci L (2005) Geology versus myth: the Holocene evolution of the Sybaris Plain. Ann Geophys 48(6):1017–1033

    Google Scholar 

  226. Vött A, Brückner H, Handl M, Schrieveret A (2006) Holocene palaeogeographies of the Astakos coastal plain (Akarnania, NW Greece). Palaeogeogr Palaeocl 239:126–146

    Article  Google Scholar 

  227. Vött A (2007) Relative sea level changes and regional tectonic evolution of seven coastal areas in NW Greece since the mid-Holocene. Quat Sci Rev 26:894–919

    Article  Google Scholar 

  228. Amorosi A, Colalongo ML, Pasini G, Preti D (1999) Sedimentary response to late quaternary sea-level changes in the Romagna coastal plain (northern Italy). Sedimentology 46:99–121

    Article  Google Scholar 

  229. Kayan I (1999) Holocene stratigraphy and geomorphological evolution of the Aegean coastal plains of Anatolia. Quat Sci Rev 8:541–548

    Article  Google Scholar 

  230. Amato V, Aucelli P, Ciampo G, Cinque A, Di Donato V, Pappone G, Petrosino P, Romano P, Rosskopf CM, Russo Ermolli E (2013) Relative sea level changes and paleogeographical evolution of the southern Sele plain (Italy) during the Holocene. Quat Int 288:112–128

    Article  Google Scholar 

  231. Westaway R (1993) Quaternary uplift of southern Italy. J Geophys Res 98:741–772

    Google Scholar 

  232. Tortorici L, Monaco C, Tansi C, Cocina O (1995) Recent and active tectonics in the Calabrian arc (Southern Italy). Tectonophisics 243:37–55

    Article  Google Scholar 

  233. Monaco C, Tortorici L, Nicolich R, Cernobori L, Costa M (1996) From collisional to rifted basins: an example from the southern Calabrian arc (Italy). Tectonophysics 266:233–249

    Article  Google Scholar 

  234. Monaco C, Tapponnier P, Tortorici L, Gillot PY (1997) Late quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth Planet Sci Lett 147:125–139

    Article  Google Scholar 

  235. Monaco C, Tortorici L (2000) Active faulting in the Calabrian arc and eastern Sicily. J Geodyn 29:407–424

    Article  Google Scholar 

  236. Philippsen B (2013) The freshwater reservoir effect in radiocarbon dating. Heritage Sci 2013:1–24

    Google Scholar 

  237. Sabatier P, Dezileau L, Blanchemanche P, Siani G, Condomines M, Bentaleb F, Piques G (2010) Holocene variations of radiocarbon reservoir ages in a mediterranean lagoonal system. Radiocarbon 52:1–12

    Article  Google Scholar 

  238. Cuiuli E (2013) La carta della vulnerabilità intrinseca dell’acquifero superficiale della Piana di S. Eufemia Lamezia (Calabria). It J Groundwater 2(2):15–23

    Google Scholar 

  239. Bellotti P, Milli S, Tortora P, Valeri P (1995) Physical stratigraphy and sedimentology of the late Pleistocene-Holocene Tiber Delta depositional sequence. Sedimentology 42:617–634

    Article  Google Scholar 

  240. Amato V, Aucelli P, D’argenio B, Da Prato S, Ferraro L, Pappone G, Petrosino P, Rosskopf CM, Russo Ermolli E (2012) Holocene environmental evolution of the costal sector in front of the Poseidonia-Paestum archaeological area (Sele plain, southern Italy). Rend Lincei Sci Fis Nat 23:45–59

    Article  Google Scholar 

  241. Aucelli P, Amato V, Budillon F, Senatore MR, Amodio S, D’Amico C, Da Prato S, Ferraro L, Pappone G, Russo Ermolli E (2012) Evolution of the Sele River coastal plain (southern Italy) during the late quaternary by inland and offshore stratigraphical analyses. Rend Lincei Sci Fis Nat 23:81–102

    Article  Google Scholar 

  242. Dinelli E, Ghosh A, Rossi V, Vaiani SC (2012) Multiproxy reconstruction of late Pleistocene-Holocene environmental changes in coastal successions:microfossil and geochemical evidences from the Po Plain (Northern Italy). Stratigraphy 9:153–167

    Google Scholar 

  243. Amorosi A, Bini M, Giacomelli S et al (2013) Middle to late Holocene environmental evolution of the Pisa coastal plain (Tuscany, Italy) and early human settlements. Quat Int 303:93–106

    Article  Google Scholar 

  244. Santangelo N, Romano P, Ascione A, Russo Ermolli E (2017) Quaternary evolution of the Southern Apennines coastal plains. A review Geol Carp. https://doi.org/10.1515/geoca-2017-0004

    Article  Google Scholar 

  245. Dias, J. M. A., Boski, T., Rodrigues, A., & Magalhães, F. (2000). Coast line evolution in Portugal since the last glacial maximum until present—A synthesis. Marine Geology,170, 177–186.

    Article  Google Scholar 

  246. Jesus, P. B., Dias, F. F., Muniz, R. A., Macário, K. C. D., Seoane, C. S., Quattrociocchi, D. G. S., et al. (2017). Holocene paleo-sea level in southeastern Brazil: An approach based on vermetids shells. Journal of Sedimentary Environments,2, 35–48.

    Article  Google Scholar 

  247. Pinto, A. F. S., Ramalho, J. C. M., Borghi, L., Carelli, T. G., Plantz, J. B., Pereira, E., et al. (2019). Background concentrations of chemical elements in Sepetiba Bay (SE Brazil). Journal of Sedimentary Environments,4(1), 108–123. https://doi.org/10.12957/jse.2019.40992.

  248. Martins, V., Dubert, J., Jouanneau, J. M., Weber, O., da Silva, E. F., Patinha, C., et al. (2007). A multiproxy approach of the Holocene evolution of shelf-slope circulation on the NW Iberian Continental Shelf. Marine Geology, 239(1–2), 1–18. https://doi.org/10.1016/j.margeo.2006.11.001 .

    Article  Google Scholar 

  249. Jaye AB, Bruyère CL, Done JM (2019) Understanding future changes in tropical cyclogenesis using Self-Organizing Maps. Weather and Climate Extremes 26:100235

    Article  Google Scholar 

  250. Knutson T, Camargo SJ, Chan JC, Emanuel K, Ho C-H, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L (2020) Tropical cyclones and climate change assessment: Part II: projected response to anthropogenic warming. Bull Am Meteor Soc 101:E303–E322

    Article  Google Scholar 

  251. Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios. J Clim 28:7203–7224

    Article  Google Scholar 

  252. Walsh KJ, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, Knutson TR, Kossin JP, Tc L, Sobel A, Sugi M (2016) Tropical cyclones and climate change. Wiley Interdiscip Rev Clim Change 7:65–89

    Article  Google Scholar 

  253. Wehner MF, Reed KA, Loring B, Stone D, Krishnan H (2018) Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the community atmospheric model under the HAPPI protocols. Earth Syst Dyn 9:187–195

    Article  Google Scholar 

  254. Yoshida K, Sugi M, Mizuta R, Murakami H, Ishii M (2017) Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys Res Lett 44:9910–9917

    Article  Google Scholar 

  255. Sobel AH, Camargo SJ, Hall TM, Lee C-Y, Tippett MK, Wing AA (2016) Human influence on tropical cyclone intensity. Science 353:242–246

    Article  Google Scholar 

  256. Bacmeister JT, Reed KA, Hannay C, Lawrence P, Bates S, Truesdale JE, Rosenbloom N, Levy M (2018) Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim Change 146:547–560

    Article  Google Scholar 

  257. Murakami H, Levin E, Delworth T, Gudgel R, Hsu P-C (2018) Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science 362:794–799

    Article  Google Scholar 

  258. McInnes KL, Walsh KJ, Hoeke RK, O’Grady JG, Colberg F, Hubbert GD (2014) Quantifying storm tide risk in Fiji due to climate variability and change. Global Planet Change 116:115–129

    Article  Google Scholar 

  259. Du S, Scussolini P, Ward PJ, Zhang M, Wen J, Wang L, Koks E, Diaz-Loaiza A, Gao J, Ke Q, Aerts JCJH (2020) Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Global Environ Change 61:102037

    Article  Google Scholar 

  260. Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8509. https://doi.org/10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  261. Roxy MK, Ritika K, Terray P, Masson S (2015) Indian Ocean warming—the bigger picture. BAMS 96(7):1070–1071

    Google Scholar 

  262. Mawren D, Reason CJC (2017) Variability of upper-ocean characteristics and tropical cyclones in the South West Indian Ocean. J Geophys Res 122(3):2012–2028

    Article  Google Scholar 

  263. Hu S, Fedorov AV (2019) Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat Clim Change 9:747–751. https://doi.org/10.1038/s41558-019-0566-x

    Article  Google Scholar 

  264. Obura DO, Church JE, Gabrie C (2012) Assessing marine world heritage form an ecosystem perspective: the Western Indian Ocean. World Heritage Centre, United Nations Education, Science and Cultural Organization (UNESCO), pp 124

    Google Scholar 

  265. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Shongwe M (2013) Long-term climate change: projections, commitments and irreversibility. Climate change 2013-the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  266. Malan N, Reason CJC, Loveday BR (2013) Variability in tropical cyclone heat potential over the Southwest Indian Ocean. J Geophys Res 118(12):6734–6746

    Article  Google Scholar 

  267. Zhang L, Han W, Karnauskas KB, Meehl GA, Hu A, Rosenbloom N, Shinoda T (2019b) Indian Ocean warming trend reduces Pacific warming response to anthropogenic greenhouse gases: an interbasin thermostat mechanism. Geophys Res Lett 46(19):10882–10890

    Article  Google Scholar 

  268. Karspeck AR, Stammer D, Köhl A, Danabasoglu G, Balmaseda M, Smith DM, Fujii Y, Zhang S, Giese B, Tsujino H, Rosati A (2017) Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim Dyn 49:957–982. https://doi.org/10.1007/s00382-015-278

    Article  Google Scholar 

  269. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12:381–388. https://doi.org/10.1007/BF00211684

    Article  Google Scholar 

  270. Josey SA, Yu L, Gulev S, Jin X, Tilinina N, Barnier B, Brodeau L (2014) Unexpected impacts of the Tropical Pacific array on reanalysis surface meteorology and heat fluxes. Geophys Res Lett 41:6213–6220. https://doi.org/10.1002/2014GL061302

    Article  Google Scholar 

  271. Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. https://doi.org/10.1029/2009JC005436

    Article  Google Scholar 

  272. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225. https://doi.org/10.1002/2013GL058951

    Article  Google Scholar 

  273. Perovich DK, Jones KF, Light B, Eicken H, Markus T, Stroeve J, Lindsay R (2011) Solar partitioning in a changing Arctic sea-ice cover. Ann Glaciol 52:192–196

    Article  Google Scholar 

  274. Wood KR, Bond NA, Danielson SL, Overland JE, Salo SA, Stabeno PJ, Whitefield J (2015) A decade of environmental change in the Pacific Arctic region. Prog Oceanogr 136:12–31

    Article  Google Scholar 

  275. L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. https://doi.org/10.1029/2008GL035205

    Article  Google Scholar 

  276. Ballinger TJ, Sheridan SC (2014) Associations between circulation pattern frequencies and sea ice minima in the western Arctic. Int J Climatol 34:1385–1394. https://doi.org/10.1002/joc.3767

    Article  Google Scholar 

  277. Simmonds I, Rudeva I (2012) The great Arctic cyclone of August 2012. Geophys Res Lett 39:L23709. https://doi.org/10.1029/2012GL054259

    Article  Google Scholar 

  278. Woodgate RA, Stafford KM, Prahl FG (2015) A synthesis of year-round interdisciplinary mooring measurements in the Bering Strait (1990–2014) and the RUSALCA years (2004–2011). Oceanography 28:46–67. https://doi.org/10.5670/oceanog.2015.57

    Article  Google Scholar 

  279. Woodgate RA (2018) Increases in Pacific inflow to the Arctic from 1990 to 2015, insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog Oceanogr 160:124–154. https://doi.org/10.1016/j.pocean.2017.12.007

    Article  Google Scholar 

  280. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  281. Kohonen T (2001) Self-organizing maps, 3 rd edn. Springer, New York, pp 501

    Book  Google Scholar 

  282. Schuenemann KC, Cassano JJ, Finnis J (2009) Synoptic forcing of precipitation over Greenland: climatology for 1961–99. J Hydrometeorol 10:60–78. https://doi.org/10.1175/2008JHM1014.1

    Article  Google Scholar 

  283. Reusch DB (2010) Nonlinear climatology and paleoclimatology: capturing patterns of variability and change with self-organizing maps. Phys Chem Earth 35:329–340. https://doi.org/10.1016/j.pce.2009.09.001

    Article  Google Scholar 

  284. Cassano EN, Glisan JM, Cassano JJ, Gutowski WJ Jr, Seefeldt MW (2015) Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Clim Res 62:199–2018. https://doi.org/10.3354/cr01274

    Article  Google Scholar 

  285. Serreze MC, Barrett AP, Cassano JJ (2011) Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J Geophys Res 116:D07104. https://doi.org/10.1029/2010JD015127

    Article  Google Scholar 

  286. Federici B, Bacino F, Cosso T, Poggi P, Rebaudengo Landó L, Sguerso D (2006) Analisi del rischio tsunami applicata ad un tratto della costa Ligure. Geomat Workb 6:53–57

    Google Scholar 

  287. Rahiman TI, Pettinga JR (2006) The offshore morpho-structure and tsunami sources of the Viti Levu Seismic Zone, southeast VitiLevu Fiji. Mar Geol 232(3–4):203–225

    Article  Google Scholar 

  288. Randazzo G, Lanza S (2020) Regional plan against coastal erosion: a conceptual model for sicily. Land 9:307. https://doi.org/10.3390/land9090307

    Article  Google Scholar 

  289. PRCEC (2020) Piano Regionale Contro l’Erosione Costiera (PRCEC) a cura di E. Foti, F. Castelli, G. La Loggia e G. Randazzo per conto del Commissario Straordinario per il Dissesto Idrogeologico in Sicilia su disposizione del Presidente della Regione Siciliana, p 520

    Google Scholar 

  290. Ghisetti F, Vezzani L (1982) The recent deformation mechanisms of the Calabrian Arc. Earth Evol Sci 3:197–206

    Google Scholar 

  291. Di Stefano A, Lentini R (1995) 1995) Ricostruzione stratigrafica e significato paleotettonico dei depositi Plio-Pleistocenici del margine tirrenico tra Villafranca Tirrena e Faro (Sicilia Nord-Orientale. Stud Geol Camerti 2:219-e237

    Google Scholar 

  292. Lentini F, Carbone S, Catalano S, Grasso M (1995) Principali lineamenti strutturali della Sicilia nord-orientale. Stud Geol Camerti 2:319–329

    Google Scholar 

  293. Lentini F, Carbone S, Catalano S, Grasso M (1996) Elementi per la ricostruzione del quadro strutturale della Sicilia Orientale. Memorie Della Società Geologica Italiana 51:179–195

    Google Scholar 

  294. Catalano R, Di Stefano P, Sulli A, Vitale FP (1996) Paleogeography and structure of the Central Mediterranean: Sicily and its offshore area. Tectonophysics 260:291–323

    Article  Google Scholar 

  295. Pepe F, Bertotti G, Cella F, Marsella E (2000) Rifted margin formation in the south Tyrrhenian Sea: a high-resolution seismic profile across the north Sicily passive continental margin. Tectonics 19:241–257

    Article  Google Scholar 

  296. Fabbri A, Gallignani P, Zitellini N (1981) Geologic evolution of the peri-Tyrrhenian Basins. In: Wezel FC (ed) Sedimentary basins of the Mediterranean margin. Tecno print, Bologna, pp 101–126

    Google Scholar 

  297. Barone A, Fabbri A, Rossi S, Sartori R (1982) Geological structure and evolution of the marine areas adjacent to the Calabrian arc. Earth Evol Sci 3:207–221

    Google Scholar 

  298. Antonioli F, Anzidei M, Amorosi A, Lo Presti V, Mastronuzzi G, Deiana G, De Falco G, Fontana A, Fontolan G, Lisco S, Marsico A, Moretti M, Orrù P, Wannino SG, Serpelloni E, Vecchio A (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quat Sci Rev 158:29–43

    Article  Google Scholar 

  299. Antonioli F, De Falco G, Lo Presti V, Moretti L, Scardino G, Anzidei M, Bonaldo D, Carniel S, Leoni G, Furlani S, MarsicoA PM, Randazzo G, Scicchitano G, Mastronuzzi G (2020) Relative sea-level rise and potential submersion risk for 2100 on 16 coastal plains of the Mediterranean sea. Water 12(8):2173

    Article  Google Scholar 

  300. Bonaldo D, Antonioli F, Archetti R, Bezzi A, Correggiari A, Davolio S, De Falco G, Fantini M, Fontolan G, Furlani S, Gaeta MG, Leoni G, PrestiV Lo, Mastronuzzi G, Pillon S, Ricchi A, Stocchi P, Samaras AG, Scicchitano G, Carniel S (2019) Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea-level rise: Lessons and challenges from the Adriatic Sea, Italy. J Coast Conserv 23(1):19–37

    Article  Google Scholar 

  301. Casalbore D, Clementucci R, Bosman A, Chiocci FL, Martorelli E, Ridente D (2020) Widespread mass-wasting processes off NE Sicily (Italy): insights from morpho-bathymetric analysis. Geol Soc Lond 500(1):393–403

    Article  Google Scholar 

  302. Sulli A, Zizzo E, Albano L (2018) Comparing methods for computation of run-up heights of landslide-generated tsunami in the Northern Sicily continental margin. Geo-Mar Lett 38:439–455. https://doi.org/10.1007/s00367-018-0544-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rossi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rossi, S. (2023). Ocean Acidification and Sea Warming-Toward a Better Comprehension of Its Consequences. In: SDG 14: Life Below Water. Springer, Cham. https://doi.org/10.1007/978-3-031-19467-2_3

Download citation

Publish with us

Policies and ethics