Skip to main content

Advertisement

Log in

A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract.

A hindcast experiment with a regional coupled atmosphere/ice/ocean model for the Baltic and North seas has been carried out. The experiment was performed over a full seasonal cycle and verified by comparisons with independent data. Further un-coupled model runs with the atmospheric and oceanic sub-models have been made and analyzed to evaluate the sensitivity of different coupling and regionalization strategies of atmospheric global climate variability to the regional system. Overall it could be shown that the regional coupled atmosphere/ice/ocean model is stable over a full seasonal cycle. Furthermore, the coupling on the regional scale turned out to be a clear improvement compared to the un-coupled run with the atmospheric model. The regional model results in the climate mode (without re-initialization) are of similar quality compared to atmospheric re-analysis for the North and Baltic seas, due to the stabilizing effect of the coupling. In the forecast mode, i.e. when no observational data are available to improve model estimates by assimilation, it can be expected that the usage of a regional coupled model system will improve the qualitiy of predictions strongly. Nevertheless, the response of the oceanic sub-system on the different regionalization strategies showed some differences important for local applications of the coupled system. Three different sensitive surface-parameters have been identified by the present study: the sea surface temperature and connected the sea ice, showing considerable sensitivity on the regionalization as well as on the coupling, and the sea surface elevation, showing a high sensitivity for the short term variability on the regionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

References

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17: 173–265

    Google Scholar 

  • Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 104: 143–148

    Google Scholar 

  • Backhaus JO (1985) A three-dimensional model for the simulation of shelf sea dynamics. Dtsch Hydrogr Z 38: 165–187

    Google Scholar 

  • Becker GA, Pauly M (1996) Sea surface temperature changes in the North Sea and their causes. Ice J Mar Sci 53: 887–898

    Article  Google Scholar 

  • Becker GA, Frey H, Wegener G (1986) Atlas der Temperatur an der Oberfläche der Nordsee. Dtsch Hydrogr Z 17, pp 128

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23: 280–287

    Google Scholar 

  • Daji H (1995) Modelling studies of barotropic and baroclinic dynamics in the Bohai Sea. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany. Reihe B: Ozeanographie 17, pp 126

    Google Scholar 

  • Damm P (1997) Die saisonale Salzgehalts- und Frischwasserverteilung in der Nordsee und ihre Bilanzierung. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany, Reihe B: Ozeanogaphie 28, pp 259

    Google Scholar 

  • Davis HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102: 405–418

    Google Scholar 

  • Deutscher Wetterdienst (1995) Dokumentation des EM/DM Systems, Deutscher Wetterdienst, with contributions from Edelmann W, Majewski D, Schättler U, Prohl P, Heise E, Doms G, Ritter B, Link A, Gertz M, Hanisch T, Fischer E. Zentralamt, Abteilung Forschung, Postfach 10 04 65, 63004 Offenbach am Main, Germany

  • Gibson R, Kallberg P, Uppala S (1996) The ECMWF Re-analysis (ERA) projekt. ECMWF Newslett 73: 7–17

    Google Scholar 

  • Gustafsson N, Nyberg L, Omstedt A (1998) Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Mon Weather Rev 126: 2882–2846

    Article  Google Scholar 

  • Hagedorn R (2000) Ein gekoppeltes Atmosphäre–Ozean-Modell für das Ostsee-Einzugsgebiet. Berichte aus dem Institut für Meereskunde, Christian-Albrechts-Universität Kiel, Germany 314, pp 184

  • Hagedorn R, Lehmann A, Jacob D (2000) A coupled high resolution atmosphere–ocean model for the Baltex region. Meteorol Z 9: 7–20

    Google Scholar 

  • Harms I (1994) Numerische Modellstudie zur winterlichen Wassermassenformation in der Barentssee, Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany, Reihe B 7, pp 97

  • Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 815–846

    Article  Google Scholar 

  • Jakob C (1999) Cloud cover in the ECMWF Reanalysis. J Clim 12: 947–959

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63: 119–129

    Google Scholar 

  • Jacob D, Van den Hurk BJJM, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77: 19–43

    Article  Google Scholar 

  • Jacobsen I, Heise E (1982) A new economic method for computation of the surface temperature in numerical models. Beitr Phys Atmos 55(2): 128–141

    Google Scholar 

  • Janssen F, Schrum C, Backhaus JO (1999) A climatological dataset of temperature and salinity for the North Sea and the Baltic Sea. Dtsch Hydrogr Z Suppl 9

  • Janssen F, Schrum C, Hübner U, Backhaus JO (2001) Uncertainty analysis of a decadal simulation with a regional ocean model for the North Sea and Baltic Sea. Clim Res 18: 55–62

    Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteorol Monogr 10, pp 84

  • Launiainen J, Vihma T (1990) Meteorological, ice and water exchange conditions. Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984–1988; Background document. Baltic Sea Environ Proc, Helsinki, Finland 35B: 22–33

    Google Scholar 

  • Leppäranta M (1981) An ice drift model for the Baltic Sea. Tellus 33: 583–596

    Google Scholar 

  • Leppäranta M, Zhang Z-H (1992) A viscous-plastic ice dynamic test model for the Baltic Sea. Finnish Institute of Marine Resources, Int Rep pp 14

  • Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. Seminar Proc ECMWF 2: 147–191

    Google Scholar 

  • Mellor GL, Durbin PA (1975) The structure and dynamics of the ocean surface mixed layer. J Phys Oceanogr 5: 718–728

    Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulent closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806

    Article  Google Scholar 

  • Paulsoen A, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7: 952–956

    Article  Google Scholar 

  • Pohlmann T (1996) Predicting the thermocline in a circulation model of the North Sea Part 1: model description, calibration and verification. Cont Shelf Res 16: 131–146

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Clim 7: 929–948

    Article  Google Scholar 

  • Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120: 303–325

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Report, 218, Hamburg, Germany

  • Schrum C (1997a) Thermocline development and instabilities at tidal mixing fronts. Results of an eddy resolving model for the German Bight. Cont Shelf Res 17: 689–716

    Article  Google Scholar 

  • Schrum C (1997b) A coupled ice-ocean model for the North Sea and the Baltic Sea. Sensitivity of the North Sea, Baltic Sea and Black Sea to anthropogenic and climatic changes. Nato ASI Ser., Kluwer Academic; Dordrecht, NL, pp 311–325

  • Schrum C, Backhaus JO (1999) Sensitivity of atmosphere–ocean heat exchange and heat content in North Sea and Baltic Sea. A comparative assessment. Tellus 51A: 526–549

    Google Scholar 

  • Schrum C, Janssen F, Hübner U (2000) Recent climate modelling in North Sea and Baltic Sea, Part A: model description and validation. Berichte aus dem Zentrum für Meeres- und Klimaforschung Hamburg, Germany 37, pp 60

    Google Scholar 

  • Smith JA, Damm P, Skogen MD, Flather RA, Pätsch J (1996) An investigation into the variability of circulation and transport on the North-West European Shelf using three hydrodynamic models. Dtsch Hydrogr Z 48

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon Weather Rev 117: 1641–1657

    Article  Google Scholar 

Download references

Acknowledgements.

This study was financed by the German Ministry of Science and Technology (BMBF) under the grant number 03F01185B (KLINO TP B, Principal Investigator: Corinna Schrum, Project Scientist: Udo Hübner). The authors wish to thank Lennart Bengtsson and Jan Backhaus who made the study possible. We wish to thank Frank Janssen for many useful discussions Gerd Becker who provided the weekly SST data for the North Sea, Sten Bergström, Bengt Carlson and Peter Damm for the freshwater run-off data and Jouko Launiainen for the sea surface elevation data at Degerby receive our grateful thanks. The global atmospheric data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with the kind assistance of the German climate computing centre (DKRZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrum, C., Hübner, U., Jacob, D. et al. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate Dynamics 21, 131–151 (2003). https://doi.org/10.1007/s00382-003-0322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-003-0322-8

Keywords

Navigation