Skip to main content

Advertisement

Log in

Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

The evolution of coastal and transitional environments depends upon the interplay of human activities and natural drivers, two factors that are strongly connected and many times conflicting. The urge for efficient tools for characterising and predicting the behaviour of such systems is nowadays particularly pressing, especially under the effects of a changing climate, and requires a deeper understanding of the connections among different drivers and different scales. To this aim, the present paper reviews the results of a set of interdisciplinary and coordinated experiences carried out in the Adriatic Sea (north-eastern Mediterranean region), discussing state-of-the art methods for coastal dynamics assessment and monitoring, and suggests strategies towards a more efficient coastal management. Coupled with detailed geomorphological information, the methodologies currently available for evaluating the different components of relative sea level rise facilitate a first identification of the flooding hazard in coastal areas, providing a fundamental element for the prioritization and identification of the sustainability of possible interventions and policies. In addition, hydro- and morpho-dynamic models are achieving significant advances in terms of spatial resolution and physical insight, also in a climatological context, improving the description of the interactions between meteo-oceanographic processes at the regional scale to coastal dynamics at the local scale. We point out that a coordinated use of the described tools should be promptly promoted in the design of survey and monitoring activities as well as in the exploitation of already collected data. Moreover, expected benefits from this strategy include the production of services and infrastructures for coastal protection with a focus on short-term forecast and rapid response, enabling the implementation of an event-oriented sampling strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antic S, Laprise R, Denis B, de Elia R (2004) Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim Dyn 23(5):473–493. https://doi.org/10.1007/s00382-004-0438-5

    Google Scholar 

  • Antonioli F, Leoni G (2007) Mappa Nazionale delle aree a rischio di allagamento da parte del mare. Dossier ENEA per lo studio dei cambiamenti climatici e loro effetti (in Italian) RT ENEA, 83pp.

  • Antonioli F, Leoni G, Gambarelli G, Caiaffa E, Goria A (2002) Piana di Fondi carta del rischio di inondazione per innalzamento del livello del mare, calcolo del valore della perdita (in Italian) Workshop ENEA Fondazione ENI Enrico Mattei, Volume Abstract, RT ENEA 04.07.2002.

  • Antonioli F, Ferranti L, Fontana A, Amorosi A, Bondesan A, Braitenberg C, Dutton A, Fontolan G, Furlani S, Lambeck K, Mastronuzzi G, Monaco C, Spada G, Stocchi P (2009) Holocene relative sea-level changes and vertical movements along the Italian coastline. Quat Int 206(1–2):102–133. https://doi.org/10.1016/j.quaint.2008.11.008

    Google Scholar 

  • Antonioli F, Lo Presti V, Anzidei M, Deiana G, De Sabata E, Ferranti L, Furlani S, Mastronuzzi G, Orrù P, Pagliarulo R, Rovere A, Sannino G, Sansò P, Scicchitano G, Spampinato CR, Vacchi M, Vecchio A (2015) Tidal notches in the Mediterranean Sea. Quat Sci Rev 119:1–19

    Google Scholar 

  • Antonioli F, Anzidei M, Amorosi A, Lo Presti V, Mastronuzzi G, Deiana G, De Falco G, Fontolan G, Fontana A, Lisco S, Marsico A, Moretti M, Orru P, Sannino GM, Serpelloni E, Vecchio A (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quat Sci Rev 158:29–43

    Google Scholar 

  • Archetti R (2009) Quantifying the evolution of a beach protected by low crested structures using video monitoring. J. Coast Res 25(4):884–899

    Google Scholar 

  • Archetti R, Gaeta MG (2012) Wave run-up observation and 2DV numerical investigation on beaches protected by structures. Proc Coast Eng Conf 33:1–12

    Google Scholar 

  • Archetti R, Zanuttigh B (2010) Integrated monitoring of the hydro-morphodynamics of a beach protected by low crested detached breakwaters. Coast Eng 57(10):879–891

    Google Scholar 

  • Archetti R, Paci A, Carniel S, Bonaldo D (2016) Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach. Nat Hazards Earth Syst Sci 16:1107–1122. https://doi.org/10.5194/nhess-16-1107-2016

    Google Scholar 

  • Ashton AD, Hutton EWH, Kettner AJ, Xing F, Kallumadikal J, Nienhuis J, Giosan L (2013) Progress in coupling models of coastline and fluvial dynamics. Comput Geosci 53:21–29. https://doi.org/10.1016/j.cageo.2012.04.004

    Google Scholar 

  • Baart F, Van Der Kaaij T, Van Ormondt M, Van Dongeren A, Van Koningsveld M, Roelvink JA (2009) Real-time forecasting of morphological storm impacts: a case study in the Netherlands. J. Coast Res 56:1617–1621

    Google Scholar 

  • Baart F, van Ormondt M, van Thiel de Vries JSM, van Koningsveld M (2016) Morphological impact of a storm can be predicted three days ahead. Comput Geosci 90(Part B):17–23. https://doi.org/10.1016/j.cageo.2015.11.011

    Google Scholar 

  • Balica SF, Wright NG, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards 64(1):73–105. https://doi.org/10.1007/s11069-012-0234-1

    Google Scholar 

  • Barbariol F, Benetazzo A, Carniel S, Sclavo M (2013) Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew Energy 60:462–471. https://doi.org/10.1016/j.renene.2013.05.043

    Google Scholar 

  • Bellafiore D, Bucchignani E, Gualdi S, Carniel S, Djurdjevic V, Umgiesser G (2012) Assessment of meteorological climate models as inputs for coastal studies. Ocean Dyn 62(4):555–568

    Google Scholar 

  • Beltrami GM, Bellotti G, De Girolamo P, Sammarco P (2001) Treatment of wave breaking and total absorption in a mild-slope equation FEM model. J Waterw Port Coast Ocean Eng 127:263–271

    Google Scholar 

  • Benetazzo A, Fedele F, Carniel S, Ricchi A, Bucchignani E, Sclavo M (2012) Wave climate of the Adriatic Sea: a future scenario simulation. Nat Hazards Earth Syst Sci 12:2065–2076. https://doi.org/10.5194/nhess-12-2065-2012

    Google Scholar 

  • Benetazzo A, Carniel S, Sclavo M, Bergamasco A (2013) Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Model 70:152–165. https://doi.org/10.1016/j.ocemod.2012.12.009

    Google Scholar 

  • Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491. https://doi.org/10.1038/ngeo553

    Google Scholar 

  • Boero F (2014) The future of the Mediterranean Sea ecosystem: towards a different tomorrow. Rend Lincei Sci Fis 26:3–12. https://doi.org/10.1007/s12210-014-0340-y

    Google Scholar 

  • Bonaldo D, Archetti R, Carniel S (2014) Monitoring northern Adriatic seashore at Jesolo resort. Sea Technol 55(2):55–58

    Google Scholar 

  • Bonaldo D, Benetazzo A, Sclavo M, Carniel S (2015) Modelling wave-driven sediment transport in a changing climate: a case study for northern Adriatic Sea (Italy). Reg Environ Chang 15:45–55. https://doi.org/10.1007/s10113-014-0619-7

    Google Scholar 

  • Bonaldo D, Benetazzo A, Bergamasco A, Campiani E, Foglini F, Sclavo M, Trincardi F, Carniel S (2016) Interactions among Adriatic continental margin morphology, deep circulation and bedform patterns. Mar Geol 375:82–98. https://doi.org/10.1016/j.margeo.2015.09.012

    Google Scholar 

  • Bonaldo D, Bucchignani E, Ricchi A, Carniel S (2017) Wind storminess in the Adriatic Sea in a climate change scenario. Acta Adriat 58(2):195–208

    Google Scholar 

  • Bonaldo D, Orlic M, Carniel S (2018) Framing continental shelf waves in the southern Adriatic Sea, a further flushing factor beyond dense water cascading. Sci Rep 8(1):660. https://doi.org/10.1038/s41598-017-18853-2

    Google Scholar 

  • Bondesan M, Castiglioni GB, Elmi C, Gabbianelli G, Marocco R, Pirazzoli P, Tomasin A (1995) Coastal areas at risk from storm surges and sea-level rise in North-Eastern Italy. J Coast Res 11:1354–1379. https://doi.org/10.2307/4298437

    Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104:7649–7666. https://doi.org/10.1029/98JC02622

    Google Scholar 

  • Brown JM, Davies AG (2009) Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont Shelf Res 29:1502–1514. https://doi.org/10.1016/j.csr.2009.03.018

    Google Scholar 

  • Bucchignani E, Sanna A, Gualdi S, Castellari S, Schiano P (2013) Simulation of the climate of the XX century in the alpine space. Nat Hazards 67:981–990. https://doi.org/10.1007/s11069-011-9883-8

    Google Scholar 

  • Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2015) High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36(2):735–756. https://doi.org/10.1002/joc.4379

    Google Scholar 

  • Burchard H (2002) Applied turbulence modelling in marine waters, vol. 100 of Lecture Notes in Earth Sciences. Springer, Berlin, p 229

    Google Scholar 

  • Burcharth HF, Lykke Andersen T, Lara JL (2014) Upgrade of coastal defence structures against increased loadings caused by climate change: a first methodological approach. Coast Eng 87:112–121. https://doi.org/10.1016/j.coastaleng.2013.12.006

    Google Scholar 

  • Carniel S, Benetazzo A, Bonaldo D, Falcieri FM, Miglietta MM, Ricchi A, Sclavo M (2016) Scratching beneath the surface while coupling atmosphere, ocean and waves: analysis of a dense water formation event. Ocean Model 10:101–112. https://doi.org/10.1016/j.ocemod.2016.03.007

    Google Scholar 

  • Cavaleri L, Bertotti L, Lionello P (1989) Wind-waves evaluation in the Adriatic and Mediterranean seas. Int J Numer Methods Eng 27:57–69

    Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cialone MA, Stauble DK (1998) Historical findings on ebb shoal mining. J Coast Res 14(2):537–563

    Google Scholar 

  • Cooper NJ, Pontee NI (2006) Appraisal and evolution of the littoral 'sediment cell' concept in applied coastal management: experiences from England and Wales (2006). Ocean Coast Manag 49(7–8):498–510

    Google Scholar 

  • Correggiari A, Remia A, Foglini F, Gallerani A, Miserocchi S, Moscon G, Piazza R, Bertaggia R (2013) Riorganizzazione dei dati geofisici, geognostici ed ambientali relativi ai depositi sabbiosi sommersi presenti nelle aree denominate RV_A, RV_B, RV_C, RV_D, RV_G, RV_JC nella piattaforma nord adriatica per implementare il geodatabase in_Sand. Attività nell’ambito del Progetto IPA–Adriatico SHAPE n.167. (in Italian). Technical Report, Istituto di Scienze Marine, Bologna, Italy

  • Correggiari A, Perini L, Remia A, Luciani P, Foglini F, Grande V, Moscon G, Calabrese L, Lorito S (2016) Sistema Informativo per l’utilizzo della risorsa Sabbia offshore nei progetti di protezione costiera: geodatabase in_Sand. Rapporto tecnico. (in Italian) 36 pp. Centro Stampa della Regione Emilia-Romagna ISBN 978–88–8186-012-8.

  • Davolio S, Stocchi P, Benetazzo A, Bohm E, Riminucci F, Ravaioli M, Li XM, Carniel S (2015a) Exceptional bora outbreak in winter 2012: validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area. Dynam Atmos Oceans 71:1–20. https://doi.org/10.1016/j.dynatmoce.2015.05.002.

    Google Scholar 

  • Davolio S, Silvestro F, Malguzzi P (2015b) Effects of increasing horizontal resolution in a convection permitting model on flood forecasting: the 2011 dramatic events in Liguria (Italy). J Hydrometeorol 16:1843–1856. https://doi.org/10.1175/JHM-D-14-0094.1

    Google Scholar 

  • De Falco G, Budillon F, Conforti A, De Muro S, Di Martino G, Innangi S, Perilli A, Tonielli R, Simeone S (2014) Sandy beaches characterization and management of coastal erosion on western Sardinia island (Mediterranean Sea). J. Coast Res 70:395–400

    Google Scholar 

  • Duong TM, Ranasinghe R, Walstra D, Roelvink D (2016) Assessing climate change impacts on the stability of small tidal inlet systems: why and how? Earth Sci Rev 154:369–380. https://doi.org/10.1016/j.earscirev.2015.12.001

    Google Scholar 

  • Eurosion (2004) Living with coastal erosion in Europe: sediment and space for sustainability PART III–Methodology for assessing regional indicators. 20 May 2004. Available at: http://www.eurosion.org/reports-online/part3.pdf (last Access: 20.10.2017)

  • Ferranti L, Antonioli F, Amorosi A, Dai Prà G, Mastronuzzi G, Mauz B, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Elevation of the last interglacial highstand in Italy: a benchmark of coastal tectonics. Quat. Int 145-146:3–18. https://doi.org/10.1016/j.quaint.2005.07.009

    Google Scholar 

  • Ferrarin C, Roland A, Bajo M, Umgiesser G, Cucco A, Davolio S, Buzzi A, Malguzzi P, Drofa O (2013) Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast. Ocean Model 61:38–48

    Google Scholar 

  • Foglini F, Campiani E, Trincardi F (2016) The reshaping of the south west Adriatic margin by cascading of dense shelf waters. Mar Geol 375:64–81

    Google Scholar 

  • Fontolan G, Pillon S, Delli Quadri F, Bezzi A (2007) Sediment storage at tidal inlets in northern Adriatic lagoons: ebb-tidal delta morphodynamics, conservation and sand use strategies. Estuar Coast Shelf Sci 75:261–277

    Google Scholar 

  • Fontolan G, Bezzi A, Pillon S (2011) Rischio da mareggiata. (in Italian) In: Atlante Geologico della Provincia di Venezia. Cartografie e Note illustrative. Ed. A.Vitturi. Provincia di Venezia: pp. 581–600 + Plate 16. ISBN 978-88-907207-0-3.

  • Fontolan G, Bezzi A, Martinucci D, Pillon S, Popesso C, Rizzetto F (2015) Sediment budget and management of the Veneto beaches, Italy: an application of the modified littoral cells management system (SICELL). Coastal and Maritime Mediterranean Conference CM 47–50, Ferrara 25–27 November 2015. Revue Paralia online, doi:https://doi.org/10.5150/cmcm.2015.010

  • Furlani S, Cucchi F (2013) Downwearing rates of vertical limestone surfaces in the intertidal zone (gulf of Trieste, Italy). Mar Geol 343:92–98

    Google Scholar 

  • Furlani S, Cucchi F, Forti F, Rossi A (2009) Comparison between coastal and inland karst limestone lowering rates in the north-eastern Adriatic region (Italy and Croatia). Geomorphology 104:73–81

    Google Scholar 

  • Furlani S, Ninfo A, Zavagno E, Paganini P, Zini L, Biolchi S, Antonioli F, Coren F, Cucchi F (2014a) Submerged notches in Istria and the Gulf of Trieste: results from the Geoswim project. Quat Int 332:37–47

    Google Scholar 

  • Furlani S, Pappalardo M, Gomez-Pujol L, Chelli A (2014b) The rocky coasts of the Mediterranean and Black Sea. In: Kennedy, D.M., Stephenson, W.J., Naylor, L.A. (Eds), Rock coast geomorphology: a global synthesis. Geological Society, London, Memoirs 40:89–123

  • Gabrié C, Lagabrielle E, Bissery C, Crochelet E, Meola B, Webster C, Claudet J, Chassanite A, Marinesque S, Robert P, Goutx M, Quod C (2012) The status of marine protected areas in the Mediterranean Sea. MedPAN & RAC/SPA. Ed: MedPAN Collection. 256 pp.

  • Gaeta MG, Samaras AG, Federico I, Archetti R, Maicu F, Lorenzetti G (2016) A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach. Nat Hazards Earth Syst Sci 16:2071–2083. https://doi.org/10.5194/nhess-16-2071-2016

    Google Scholar 

  • Galea A, Grifoll M, Roman F, Mestres M, Armenio V, Sanchez-Arcilla A, Zammit Mangion L (2014) Numerical simulation of water mixing and renewals in the Barcelona harbour area: the winter season. Environ Fluid Mech 14:1405–1425

    Google Scholar 

  • Giorgi F, Gutowki WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490. https://doi.org/10.1146/annurev-environ-102014-021217

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projection for the Mediterranean region. Glob Planet Chang 63:90–104

    Google Scholar 

  • Gornitz VM, White TW, Cushman RM (1991) Vulnerability of the U.S. to future sea-level rise. In Proceedings of seventh symposium on coastal and ocean management: 2354–2368. Long Beach, CA (USA)

  • Grande V, Proietti R, Foglini F, Remia A, Correggiari A, Paganelli D, Targusi M, Franceschini G, La Valle P, Berducci MT, La Porta B, Lattanzi L, Lisi I, Maggi C, Loia M, Pazzini A, Gabellini M, Nicoletti L (2015) Sistema Informativo per il monitoraggio ambientale della risorsa sabbia offshore nei progetti di protezione costiera: geodatabase env_Sand. ISPRA, Manuali e Linee guida, 127/2015: 63 pp. In Italian

  • Greco M, Martino G (2016) Vulnerability assessment for preliminary flood risk mapping and management in coastal areas. Nat Hazards 82:7–26. https://doi.org/10.1007/s11069-016-2293-1

    Google Scholar 

  • Guerrero M, Rüther N, Szupiany RN (2012) Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations. Flow Meas Instrum 23(1):40–48. https://doi.org/10.1016/j.flowmeasinst.2011.10.003

    Google Scholar 

  • Guerrero M, Rüther N, Archetti R (2014) Comparison under controlled conditions between multi-frequency ADCPs and LISST-SL for investigating suspended sand in rivers. Flow Meas Instrum 37:73–82

    Google Scholar 

  • Hervouet JM (2007) Hydrodynamics of free surface flows: modelling with the finite element method, Wiley, Ltd, 360 pp.

  • High C, Hanna FK (1970) A method for the direct measurement of erosion on rock surfaces. British Geomorphological Research Group, Technical Bulletin 5:1–25

    Google Scholar 

  • Hinkel J (2005) DIVA: an iterative method for building modular integrated models. Adv Geosci 4:45–50

    Google Scholar 

  • Hinkel J, Klein R (2009) The DINAS-COAST project: developing a tool for the dynamic and interactive assessment of coastal vulnerability. Glob Environ Chang 19(3):384–395

    Google Scholar 

  • Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci U S A 111(9):3292–3297. https://doi.org/10.1073/pnas.1222469111

    Google Scholar 

  • Holman RA, Stanley J (2007) The history and technical capabilities of Argus. Coast Eng 54:477–491

    Google Scholar 

  • Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 841(6)

  • Inman DL (2005) Littoral Cells. In: Schwartz ML (ed) Encyclopedia of coastal science: 594–599. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_196

    Google Scholar 

  • Jäger WS, Christie EK, Hanea AM, den Heijer C, Spencer T (2018) A Bayesian network approach for coastal risk analysis and decision making. Coast Eng 134:48–61

    Google Scholar 

  • Jiménez JA, Osorio A, Marino-Tapia I, Davidson M, Medina R, Kroon A, Archetti R, Ciavola P, Aarnikhof S (2007) Beach recreation planning using video-derived coastal state indicators. Coast Eng 54:507–521

    Google Scholar 

  • Kaminsky GM, Gelfenbaum G (2000) The Southwest Washington coastal erosion study: a scientific research project to address management-scale objectives. In: Proceedings of coastal society 17th conference "coasts at the millennium". 9–12 July 2000, Portland, Oregon

  • Karambas TV, Samaras AG (2014) Soft shore protection methods: the use of advanced numerical models in the evaluation of beach nourishment. Ocean Eng 92:129–136. https://doi.org/10.1016/j.oceaneng.2014.09.043

    Google Scholar 

  • Kroon A, Davidson MA, Aarninkhof SGJ, Archetti R, Armaroli C, Gonzalez M, Medri S, Osorio A, Aagaard T, Holman RA, Spanhoff R (2007) Application of remote sensing video systems to coastline management problems. Coast Eng 54:493–505. https://doi.org/10.1016/j.coastaleng.2007.01.004

    Google Scholar 

  • Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along Italian coast during Holocene and a projection for the future. Quat Int 232(1–2):250–257. https://doi.org/10.1016/j.quaint.2010.04.026

    Google Scholar 

  • Lamberti A, Archetti R, Kramer M, Paphitis D, Mosso C, Di Risio M (2005) European experience of low crested structures for coastal management. Coast Eng 52(10–11):841–866

    Google Scholar 

  • Ličer M, Smerkol P, Fettich A, Ravdas M, Papapostolou A, Mantziafou A, Strajnar B, Cedilnik J, Jeromel M, Jerman J, Petan S, Sofianos S (2016) Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling. Ocean Sci 12:71–86. https://doi.org/10.5194/os-12-71-2016

    Google Scholar 

  • Luo J, Li M, Sun Z, O'Connor BA (2013) Numerical modelling of hydrodynamics and sand transport in the tide-dominated coastal-to-estuarine region. Mar Geol 342:14–27. https://doi.org/10.1016/j.margeo.2013.06.004

    Google Scholar 

  • Marsico A, Lisco S, Lo Presti V, Antonioli F, Amorosi A, Anzidei M, Deiana G, De Falco G, Fontana A, Fontolan G, Moretti M, Orrù P, Serpelloni E, Sannino G, Vecchio A, Mastronuzzi G (2017) Flooding scenario for four Italian coastal plains using three relative sea-level rise models. J Maps 13(2):961–967

    Google Scholar 

  • McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazards-UK 9(3):233–248(16)

    Google Scholar 

  • Mendoza PET, Jimenez QJA (2008) Vulnerability assessment to coastal storms at a regional scale. Proc. 31st ICCE Conference, ASCE, Hamburg.

  • Mihanović H, Vilibić I, Carniel S, Tudor M, Russo A, Bergamasco A, Bubić N, Ljubešić Z, Viličić D, Boldrin A, Malačić V, Celio M, Comici C, Raicich F (2013) Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci 9(3):561–572. https://doi.org/10.5194/os-9-561-2013

    Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Google Scholar 

  • Milliman JD, Bonaldo D, Carniel S (2016) Flux and fate of river-discharged sediments to the Adriatic Sea. Adv Oceanogr Limnol 7(2):106–114. https://doi.org/10.4081/aiol.2016.5899.

    Google Scholar 

  • Montereale Gavazzi G, Madricardo F, Janowski L, Kruss A, Blondel P, Sigovini M, Foglini F (2016) Evaluation of seabed mapping methods for fine-scale classification of extremelyshallow benthic habitats – application to the Venice lagoon, Italy. Estuar Coast Shelf Sci 170:45–60. https://doi.org/10.1016/j.ecss.2015.12.014

    Google Scholar 

  • Nelson B (1970) Hydrography, sediment dispersal, and recent historical development of the Po River Delta, Italy. In: Morgan JP, Shaver RH (eds) Deltaic sedimentation, modern and ancient. Society of Economic Paleontologists and Mineralogists, Special Publication No. 15, pp 152–184

  • Nicholls RJ, French JR, van Maanen B (2015) Simulating decadal coastal morphodynamics. Geomorphology 256:1–2. https://doi.org/10.1016/j.geomorph.2015.10.015

    Google Scholar 

  • Özyurt G (2007) Vulnerability of coastal areas to sea level rise: a case of study on Göksu Delta. Thesis submitted to the Graduate School of Natural and Appl Sci of Middle-East Technical University. January 2007. Available on-line at: http://etd.lib.metu.edu.tr/upload/12608146/index.pdf (last access: 10.08.2011).

  • Palmer BJ, van der Elst R, Mackay F, Mather AA, Smith AM, Bundy SC, Thackeray Z, Leuci R, Parak O (2011) Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. J Coast Res:1390–1395

  • Payo A, Hall JW, French J, Sutherland J, van Maanen B, Nicholls RJ, Reeve DE (2016) Causal loop analysis of coastal geomorphological systems. Geomorphology 256:36–48. https://doi.org/10.1016/j.geomorph.2015.07.048

    Google Scholar 

  • Peckham SD, Hutton EWH, Norris B (2013) A component-based approach to integrated modeling in the geosciences: the design of CSDMS. Comput Geosci 53:3–12. https://doi.org/10.1016/j.cageo.2012.04.002.

    Google Scholar 

  • Petronio A, Roman F, Nasello C, Armenio V (2013) Large-Eddy simulation model for wind driven sea circulation in coastal areas. Nonlinear Process Geophys 20:1095–1112

    Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting Future Sea-level rise. Science 315:368–370. https://doi.org/10.1126/science.1135456

    Google Scholar 

  • Ramieri E, Hartley A, Barbanti A, Duarte Santos F, Gomes A, Hilden M, Laihonen P, Marinova N, Santini M (2011) Methods for assessing coastal vulnerability to climate change, European topic Centre on climate change impacts, vulnerability and adaptation (ETC CCA) technical paper, Bologna (IT) 93, October 2011

  • Ranasinghe R, Larson M, Savioli J (2010) Shoreline response to a single shore-parallel submerged breakwater. Coast Eng 57:1006–1017. https://doi.org/10.1016/j.coastaleng.2010.06.002

    Google Scholar 

  • Regione Emilia-Romagna (2011) Nuovi strumenti per la gestione dei litorali in Emilia–Romagna, SICELL il sistema gestionale delle celle litoranee. (In Italian). Servizio Difesa del Suolo della Costa e Bonifica, 61 p.

  • Reikard G (2009) Forecasting ocean wave energy: tests of time-series models. Ocean Eng 36:348–356. https://doi.org/10.1016/j.oceaneng.2009.01.003

    Google Scholar 

  • Renault L, Chiggiato J, Warner JC, Gomez M, Vizoso G, Tintoré J (2012) Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of lion and Balearic Sea. J Geophys Res-Oceans 117(C9). https://doi.org/10.1029/2012JC007924

  • Ribas F, de Swart HE, Calvete D, Falqués A (2012) Modeling and analyzing observed transverse sand bars in the surf zone. J Geophys Res 117(F2):F02013. https://doi.org/10.1029/2011JF002158

    Google Scholar 

  • Ricchi A, Miglietta MM, Falco PP, Benetazzo A, Bonaldo D, Bergamasco A, Sclavo M, Carniel S (2016) On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos Res 172-173:48–65. https://doi.org/10.1016/j.atmosres.2015.12.023

    Google Scholar 

  • Richards J, Nicholls RJ (2009) Impacts of climate change in coastal systems in Europe. PESETA-coastal systems study. JRC scientific and technical reports.

  • Russo A, Coluccelli A, Carniel S, Benetazzo A, Valentini A, Paccagnella T, Ravaioli M, Bortoluzzi G (2013) Operational models hierarchy for short term marine predictions: the Adriatic Sea example. OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, 0–5.

  • Samaras AG, Koutitas CG (2012) An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean Coast Manag 69:68–77. https://doi.org/10.1016/j.ocecoaman.2012.08.010

    Google Scholar 

  • Samaras AG, Koutitas CG (2014a) The impact of watershed management on coastal morphology: a case study using an integrated approach and numerical modelling. Geomorphology 211:52–63. https://doi.org/10.1016/j.geomorph.2013.12.029

    Google Scholar 

  • Samaras AG, Koutitas CG (2014b) Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: a case study using an integrated approach. Int J Sediment Res 29:304–315. https://doi.org/10.1016/s1001-6279(14)60046-9

    Google Scholar 

  • Samaras AG, Gaeta MG, Moreno Miquel A, Archetti R (2016) High resolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision support and assessment. Nat Hazards Earth Syst Sci 16:1499–1518

    Google Scholar 

  • Santoro F, Tonino M, Torresan S, Critto A, Marcomini A (2013) Involve to improve: a participatory approach for a decision support system for coastal climate change impacts assessment. The north Adriatic case. Ocean Coast Manag 78:101–111. https://doi.org/10.1016/j.ocecoaman.2013.03.008

    Google Scholar 

  • Sclavo M, Benetazzo A, Carniel S, Bergamasco A, Falcieri FM, Bonaldo D (2013) Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin. J Coastal Res 165(65):1587–1592. https://doi.org/10.2112/SI65-268.1

    Google Scholar 

  • Siegle E, Huntley DA, Davidson MA (2007) Coupling video imaging and numerical modelling for the study of inlet morphodynamics. Mar Geol 236:143–163

    Google Scholar 

  • Signell RP, Carniel S, Cavaleri L, Chiggiato J, Doyle JD, Pullen J, Sclavo M (2005) Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J Mar Syst 53(1–4):217–233. https://doi.org/10.1016/j.jmarsys.2004.03.006

    Google Scholar 

  • Simeone S, De Falco G (2012) Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 151-152:224–233

    Google Scholar 

  • Simeone S, De Falco G, Quattrocchi G, Cucco A (2014) Morphological changes of a Mediterranean beach over one year (san Giovanni Sinis, western Mediterranean). J. Coast Res 70:217–222

    Google Scholar 

  • Simon TP, Morris CC, Argyilan EP (2016) Characterization of coastal drift-cell sediment processes effecting the restoration of the southern Lake Michigan shoreline. Environ Manag 58(6):1059–1073

    Google Scholar 

  • Soomere T, Bishop SR, Viska M, Raamet A (2015) An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim Res 62(2):163–171

    Google Scholar 

  • Stephenson WJ, Kirk RM, Kennedy DM, Finlayson BL, Chen Z (2012) Long term shore platform surface lowering rates: revisiting gill and Lang after 32 years. Mar Geol 299-302:90–95

    Google Scholar 

  • Stockdon HF, Doran KJ, Thompson DM, Sopkin KL, Plant NG, Sallenger AH (2012) National assessment of hurricane-induced coastal erosion hazards-Gulf of Mexico, U.S. Geological Survey Open-File Report 2012–1084:51. https://pubs.er.usgs.gov/publication/ofr20121084

  • Syvitski JPM, Kettner AJ (2007) On the flux of water and sediment into the northern Adriatic Sea. Cont Shelf Res 27:296–308. https://doi.org/10.1016/j.csr.2005.08.029

    Google Scholar 

  • Szlafsztein C, Sterr H (2007) A GIS-based vulnerability assessment of coastal natural hazards, state of Para, Brazil. J Coast Conserv 11(1):53–66

    Google Scholar 

  • Tolman HL, Group WD (2014) User manual and system documentation of WAVEWATCH III version 4.18. NOAA / NWS / NCEP / MMAB Technical Note, p. 311.

  • Torresan S, Zabeo A, Rizzi J, Critto A, Pizzol L, Giove S, Marcomini A (2010) Risk assessment and decision support tools for the integrated evaluation of climate change on coastal zones. In Swayne D.A., Wanhong Yang, Voinov A.A., Rizzoli A. and Filatova T. (eds.). Proceedings of the International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada.

  • Torresan S, Critto A, Rizzi J, Marcomini A (2012) Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the north Adriatic Sea. Nat Hazards Earth Syst 12:2347–e2368

    Google Scholar 

  • Trudgill ST, High CJ, Hanna KK (1981) Improvements to the micro-erosion meter. British Geomorphological Research Group, Technical Bulletin 29:3–17

    Google Scholar 

  • Turner IL, Anderson DJ (2007) Web-based and ‘real-time’ beach management system. Coast Eng 54(6–7):555–565

    Google Scholar 

  • Uunk L, Wijnberg KM, Morelissen R (2010) Automated mapping of the intertidal beach bathymetry from video images. Coast Eng 57(4):461–469

    Google Scholar 

  • van Maanen B, Nicholls RJ, French JR, Barkwith A, Bonaldo D, Burningham H, Murray B, Payo A, Sutherland J, Thornhill G, Townend IH, van der Wegen MJA, Walkden M (2016) Simulating mesoscale coastal evolution for decadal coastal management: a new framework integrating multiple, complementary modelling approaches. Geomorphology 256:68–80. https://doi.org/10.1016/j.geomorph.2015.10.026

    Google Scholar 

  • Villaret C, Hervouet JM, Kopmann R, Merkel U, Davies AG (2013) Morphodynamic modeling using the Telemac finite-element system. Comput Geosci 53:105–113. https://doi.org/10.1016/j.cageo.2011.10.004

    Google Scholar 

  • Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 35(3):230–244. https://doi.org/10.1016/j.ocemod.2010.07.010

    Google Scholar 

Download references

Acknowledgements

This work was supported by RITMARE National Flagship initiative funded by the Italian Ministry of Education, University and Research (IV Phase, Line 5, “Coastal Erosion and Vulnerability”), by the UE H2020 Programme (CEASELESS Project, grant agreement No. 730030), and by the Interreg-MED Programme (CO-EVOLVE Project).

The Authors thankfully acknowledge Dr. Edoardo Bucchignani (CMCC and CIRA, Capua, Italy) for providing the climatological model data mentioned in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bonaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaldo, D., Antonioli, F., Archetti, R. et al. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy. J Coast Conserv 23, 19–37 (2019). https://doi.org/10.1007/s11852-018-0633-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11852-018-0633-x

Keywords

Navigation