Skip to main content

Improving Head Rice Yield and Milling Quality: State-of-the-Art and Future Prospects

  • Protocol
  • First Online:
Rice Grain Quality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1892))

Abstract

Increasing paddy yield in rice does not directly translate to enhancing food security because significant decrease in grain yield can happen during postharvest processing of the rice paddy. In parallel with enhancing paddy yield, improving the milling quality of rice is essential in ensuring food security by mitigating the impact of significant losses during the postharvest processing of rice grains. From an industrial standpoint, maximizing the milling recovery of whole grain polished rice is crucial in fetching higher revenues to rice farmers. Significant advances in rice postharvest processing technology have been achieved which are geared toward reducing the incidence of fissures and chalkiness to increase head rice yield (HRY) in rice. The genetic bases of kernel development and grain dimension are also characterized. In addition to these advancements, an integrated phenotyping suite to simultaneously characterize phenotypes related to milling quality will help in screening for breeding lines with high HRY. Toward this goal, modern imaging tools and computer algorithms are currently being developed for high-throughput characterization of rice milling quality. With the availability of more sophisticated, affordable, automated, and nondestructive phenotyping methods of milling quality, it is envisioned that significant improvement in HRY will be made possible to ensure rice food security in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hodges RJ, Buzby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149:37ā€“45

    ArticleĀ  Google ScholarĀ 

  2. Buggenhout J, Brijs K, Celus I, Delcour JA (2013) The breakage susceptibility of raw and parboiled rice: a review. J Food Eng 117(3):304ā€“315

    ArticleĀ  Google ScholarĀ 

  3. Bell M, Bakker R, De Padua D, Rickman J (1998) Rice quality management-principles and some lessons. In: ACIAR proceedings, 2000. ACIAR. pp 255ā€“263

    Google ScholarĀ 

  4. Otto RK, David LC (2004) Rough-rice drying - moisture adsorption and desorption. In: Champagne ET (ed) Rice: chemistry and technology. Grain science references. American Association of Cereal Chemists, Inc., St. Paul, MN, pp 223ā€“268. https://doi.org/10.1094/1891127349.009

    ChapterĀ  Google ScholarĀ 

  5. Kunze O, Choudhury M (1972) Moisture adsorption related to the tensile strength of rice. Cereal Chem 49:684ā€“696

    Google ScholarĀ 

  6. Zhang Q, Yang W, Sun Z (2005) Mechanical properties of sound and fissured rice kernels and their implications for rice breakage. J Food Eng 68(1):65ā€“72

    ArticleĀ  Google ScholarĀ 

  7. Iguaz A, RodrĆ­guez M, VĆ­rseda P (2006) Influence of handling and processing of rough rice on fissures and head rice yields. J Food Eng 77(4):803ā€“809. https://doi.org/10.1016/j.jfoodeng.2005.08.006

    ArticleĀ  Google ScholarĀ 

  8. Sharma AD, Kunze OR (1982) Post-drying fissure developments in rough rice. Trans ASAE 25(2):465ā€“468

    ArticleĀ  Google ScholarĀ 

  9. Cnossen AG, Jimenez MJ, Siebenmorgen TJ (2003) Rice fissuring response to high drying and tempering temperatures. J Food Eng 59(1):61ā€“69

    ArticleĀ  Google ScholarĀ 

  10. Cnossen AG, Siebenmorgan TJ, Yang W, Bautista RC (2001) An application of glass transition temperature to explain rice kernel fissure occurrence during the drying process. Dry Technol 19(8):1661ā€“1682. https://doi.org/10.1081/Drt-100107265

    ArticleĀ  Google ScholarĀ 

  11. Hwang SS, Cheng YC, Chang C, Lur HS, Lin TT (2009) Magnetic resonance imaging and analyses of tempering processes in rice kernels. J Cereal Sci 50(1):36ā€“42. https://doi.org/10.1016/j.jcs.2008.10.012

    ArticleĀ  Google ScholarĀ 

  12. Cnossen AG, Siebenmorgen TJ (2000) The glass transition temperature concept in rice drying and tempering: effect on milling quality. Trans ASAE 43(6):1661ā€“1667

    ArticleĀ  Google ScholarĀ 

  13. Perdon AA, Siebenmorgen TJ, Mauromoustakos A (2000) Glassy state transition and rice drying: development of a brown rice state diagram. Cereal Chem 77(6):708ā€“713

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Siebenmorgen TJ, Yang W, Sun Z (2004) Glass transition temperature of rice kernels determined by dynamic mechanical thermal analysis. Trans ASAE 47(3):835ā€“839

    ArticleĀ  Google ScholarĀ 

  15. Sun ZH, Yang WD, Siebenmorgen T, Stelwagen A, Cnossen A (2002) Thermomechanical transitions of rice kernels. Cereal Chem 79(3):349ā€“353. https://doi.org/10.1094/Cchem.2002.79.3.349

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Yang W, Jia CC, Siebenmorgen TJ, Pan Z, Cnossen AG (2003) Relationship of kernel moisture content gradients and glass transition temperatures to head rice yield. Biosyst Eng 85(4):467ā€“476

    ArticleĀ  Google ScholarĀ 

  17. Yang W, Jia CC, Howell TA (2003) Relationship of moisture content gradients and glass transition temperatures to head rice yield during cross-flow drying. Biosyst Eng 86(2):199ā€“206

    ArticleĀ  Google ScholarĀ 

  18. Slade L, Levine H (1991) A food polymer science approach to structure-property relationships in aqueous food systems: non-equilibrium behavior of carbohydrate-water systems. In: Levine H, Slade L (eds) Water relationships in foods, Advances in experimental medicine and biology, vol 302. Springer, New York, pp 29ā€“101. https://doi.org/10.1007/978-1-4899-0664-9_3

    ChapterĀ  Google ScholarĀ 

  19. Slade L, Levine H (1995) Glass transitions and water-food structure interactions. Adv Food Nutr Res 38(2):103ā€“179

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Sarker NN, Kunze OR, Strouboulis T (1996) Transient moisture gradients in rough rice mapped with finite element model and related to fissures after heated air drying. Trans ASAE 39(2):625ā€“631

    ArticleĀ  Google ScholarĀ 

  21. Yang W, Jia CC, Siebenmorgen TJ, Howell TA, Cnossen AG (2002) Intra-kernel moisture responses of rice to drying and tempering treatments by finite element simulation. J Long Form Workform 45(4):1037ā€“1044

    Google ScholarĀ 

  22. Banaszek MM, Siebenmorgen TJ (1993) Individual Rice Kernel Drying Curves. Trans ASAE 36(2):521ā€“528. https://doi.org/10.13031/2013.28368

    ArticleĀ  Google ScholarĀ 

  23. Chen H, Siebenmorgen TJ, Marks BP (1997) Relating drying rate constant to head rice yield reduction of long-grain rice. Trans ASAE 40(4):1133ā€“1139. https://doi.org/10.13031/2013.21331

    ArticleĀ  Google ScholarĀ 

  24. Kunze O (1979) Fissuring of the rice grain after heated air drying. Trans ASEA 22(5):1197ā€“1201. https://doi.org/10.13031/2013.35183

    ArticleĀ  Google ScholarĀ 

  25. Zhang Q, Yang W, Jia C (2003) Preservation of head rice yield under high-temperature tempering as explained by the glass transition of rice kernels. Cereal Chem 80(6):684ā€“688. https://doi.org/10.1094/CCHEM.2003.80.6.684

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Ding C, Khir R, Zhongli P, Zhang J, El-Mashad H, Tu K (2015) Effect of infrared and conventional drying methods on physicochemical characteristics of stored white rice. Cereal Chem J. https://doi.org/10.1094/CCHEM-11-14-0232-R

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Fitzgerald MA, Resurreccion AP (2009) Maintaining the yield of edible rice in a warming world. Funct Plant Biol 36(12):1037ā€“1045. https://doi.org/10.1071/fp09055

    ArticleĀ  Google ScholarĀ 

  28. Zakaria S, Matsuda T, Tajima S, Niita Y (2002) Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci 5(2):160ā€“168

    ArticleĀ  Google ScholarĀ 

  29. Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice(Oryza sativa L.). Breed Sci 57(1):47ā€“52. https://doi.org/10.1270/Jsbbs.57.47

    ArticleĀ  Google ScholarĀ 

  30. Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66(7):1737ā€“1748. https://doi.org/10.1093/jxb/eru544

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Ashida K, Iida S, Yasui T (2009) Morphological, physical, and chemical properties of grain and flour from chalky rice mutants. Cereal Chem 86(2):225ā€“231. https://doi.org/10.1094/cchem-86-2-0225

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Zhu LJ, Dogan H, Gajula H, Gu MH, Liu QQ, Shi YC (2012) Study of kernel structure of high-amylose and wild-type rice by X-ray microtomography and SEM. J Cereal Sci 55(1):1ā€“5

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Lyman NB, Jagadish KSV, Nalley LL, Dixon BL, Siebenmorgen T (2013) Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS One 8 (8): ARTN e72157. https://doi.org/10.1371/journal.pone.0072157

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem 77(5):627ā€“632

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Singh N, Sodhi NS, Kaur M, Saxena SK (2003) Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chem 82(3):433ā€“439

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Swamy YMI, Bhattacharya KR (1982) Breakage of rice during milling. 4. Effect of kernel chalkiness. J Food Sci Technol Mysore 19(3):125ā€“126

    Google ScholarĀ 

  37. Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14(3):133ā€“139. https://doi.org/10.1016/j.tplants.2008.12.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Cheng FM, Zhong LJ, Wang F, Zhang GP (2005) Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem 90(1ā€“2):39ā€“46. https://doi.org/10.1016/j.foodchem.2004.03.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Chun A, Song J, Kim K-J, Lee H-J (2009) Quality of head and chalky rice and deterioration of eating quality by chalky rice. J Crop Sci Biotechnol 12(4):239ā€“244. https://doi.org/10.1007/s12892-009-0142-4

    ArticleĀ  Google ScholarĀ 

  40. Yoshioka Y, Iwata H, Tabata M, Ninomiya S, Ohsawa R (2007) Chalkiness in rice: potential for evaluation with image analysis. Crop Sci 47(5):2113ā€“2120

    ArticleĀ  Google ScholarĀ 

  41. Sun CM, Liu T, Ji CX, Jiang M, Tian T, Guo DD, Wang LJ, Chen YY, Liang XM (2014) Evaluation and analysis the chalkiness of connected rice kernels based on image processing technology and support vector machine. J Cereal Sci 60(2):426ā€“432

    ArticleĀ  Google ScholarĀ 

  42. Endo-Higashi N, Izawa T (2011) Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083ā€“1094

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Huang XH, Zhao Y, Wei XH, Li CY, Wang A, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32ā€“U53

    ArticleĀ  Google ScholarĀ 

  44. Sun CH, Chen D, Fang J, Wang PR, Deng XJ, Chu CC (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell 5(12):889ā€“898

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14(1):45ā€“52

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Butardo VM Jr, Anacleto R, Parween S, Samson I, de Guzman K, Alhambra CM, Misra G, Sreenivasulu N (2017) Systems genetics identifies a novel regulatory domain of amylose synthesis. Plant Physiol 173(1):887ā€“906. https://doi.org/10.1104/pp.16.01248

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Sun H, Siebenmorgen TJ (1993) Milling characteristics of various rough rice kernel thickness fractions. Cereal Chem 70(6):727ā€“733

    Google ScholarĀ 

  48. Indudhara Swamy YM, Indudhara Swamy YM, Bhattacharya KR (1980) Breakage of rice during milling - effect of kernel defects and grain dimension. J Food Process Eng 3(1):29ā€“42

    ArticleĀ  Google ScholarĀ 

  49. Chen X, Xun Y, Li W, Zhang JX (2010) Combining discriminant analysis and neural networks for corn variety identification. Comput Electron Agric 71:S48ā€“S53

    ArticleĀ  Google ScholarĀ 

  50. Dubey BP, Bhagwat SG, Shouche SP, Sainis JK (2006) Potential of artificial neural networks in varietal identification using morphometry of wheat grains. Biosyst Eng 95(1):61ā€“67

    ArticleĀ  Google ScholarĀ 

  51. Cheng F, Ying YB, Li YB (2006) Detection of defects in rice seeds using machine vision. Trans ASABE 49(6):1929ā€“1934

    ArticleĀ  Google ScholarĀ 

  52. Courtois F, Faessel M, Bonazzi C (2010) Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control 21(4):567ā€“572

    ArticleĀ  Google ScholarĀ 

  53. Lin P, Chen YM, He Y (2012) Identification of broken rice kernels using image analysis techniques combined with velocity representation method. Food Bioprocess Technol 5(2):796ā€“802

    ArticleĀ  Google ScholarĀ 

  54. van Dalen G (2004) Determination of the size distribution and percentage of broken kernels of rice using flatbed scanning and image analysis. Food Res Int 37(1):51ā€“58

    ArticleĀ  Google ScholarĀ 

  55. Fang CY, Hu XQ, Sun CC, Duan BW, Xie LH, Zhou P (2015) Simultaneous determination of multi rice quality parameters using image analysis method. Food Anal Method 8(1):70ā€“78

    ArticleĀ  Google ScholarĀ 

  56. Yadav BK, Jindal VK (2001) Monitoring milling quality of rice by image analysis. Comput Electron Agric 33(1):19ā€“33

    ArticleĀ  Google ScholarĀ 

  57. Jayas DS, Singh CB (2012) 15 - Grain quality evaluation by computer vision. In: Sun D-W (ed) Computer vision technology in the food and beverage industries. Woodhead Publishing, Cambridge, UK, pp 400ā€“421. https://doi.org/10.1533/9780857095770.3.400

    ChapterĀ  Google ScholarĀ 

  58. Shahin MA, Hatcher DW, Symons SJ (2012) 17 - Development of multispectral imaging systems for quality evaluation of cereal grains and grain products. In: Sun D-W (ed). Computer vision technology in the food and beverage industries. Woodhead Publishing, Cambridge, UK, pp 451ā€“482. https://doi.org/10.1533/9780857095770.3.451

    ChapterĀ  Google ScholarĀ 

  59. Wang L, Liu D, Pu HB, Sun DW, Gao WH, Xiong ZJ (2015) Use of hyperspectral imaging to discriminate the variety and quality of rice. Food Anal Method 8(2):515ā€“523

    ArticleĀ  Google ScholarĀ 

  60. Kumar PA, Bal S (2007) Automatic unhulled rice grain crack detection by X-ray imaging. Trans ASABE 50(5):1907ā€“1911

    ArticleĀ  Google ScholarĀ 

  61. Wan YN, Lin CM, Chiou JF (2002) Rice quality classification using an automatic grain quality inspection system. Trans ASAE 45(2):379ā€“387

    Google ScholarĀ 

  62. Wan YN (2002) Kernel handling performance of an automatic grain quality inspection system. Trans ASAE 45(2):369ā€“377

    Google ScholarĀ 

  63. Pinson SRM, Jia YL, Gibbons JW (2013) Three quantitative trait loci conferring resistance to kernel fissuring in rice identified by selective genotyping in two tropical Japonica populations. Crop Sci 53(6):2434ā€“2443

    ArticleĀ  Google ScholarĀ 

  64. Pinson SRM, Jia YL, Gibbons J (2012) Response to early generation selection for resistance to rice kernel fissuring. Crop Sci 52(4):1482ā€“1492

    ArticleĀ  Google ScholarĀ 

  65. Nelson JC, McClung AM, Fjellstrom RG, Moldenhauer KA, Boza E, Jodari F, Oard JH, Linscombe S, Scheffler BE, Yeater KM (2011) Mapping QTL main and interaction influences on milling quality in elite US rice germplasm. Theor Appl Genet 122(2):291ā€“309. https://doi.org/10.1007/s00122-010-1445-z

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Liu X, Hua ZT, Wang Y (2011) Quantitative trait locus (QTL) analysis of percentage grains chalkiness using AFLP in rice (Oryza sativa L.). Afr J Biotechnol 10(13):2399ā€“2405

    CASĀ  Google ScholarĀ 

  67. Liu X, Wang Y, Wang SW (2012) QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa). Genet Mol Res 11(1):717ā€“724. https://doi.org/10.4238/2012.March.22.1

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Guo T, Liu XL, Wan XY, Weng JF, Liu SJ, Liu X, Chen MJ, Li JJ, Su N, Wu FQ, Cheng ZJ, Guo XP, Lei CL, Wang JL, Jiang L, Wan JM (2011) Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol 53(8):598ā€“607. https://doi.org/10.1111/j.1744-7909.2011.01041.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Zhou LJ, Chen LM, Jiang L, Zhang WW, Liu LL, Liu X, Zhao ZG, Liu SJ, Zhang LJ, Wang JK, Wan JM (2009) Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor Appl Genet 118(3):581ā€“590. https://doi.org/10.1007/s00122-008-0922-0

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Liu XL, Wan XY, Ma XD, Wan JM (2011) Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54(1):64ā€“80. https://doi.org/10.1139/G10-070

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110(7):1334ā€“1346

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101(5ā€“6):823ā€“829. https://doi.org/10.1007/s001220051549

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Kang H-G, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42(6):901ā€“911. https://doi.org/10.1111/j.1365-313X.2005.02423.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Ryoo N, Yu C, Park C-S, Baik M-Y, Park I-M, Cho M-H, Bhoo SH, An G, Hahn T-R, Jeon J-S (2007) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083ā€“1095. https://doi.org/10.1007/s00299-007-0309-8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Woo M-O, Ham T-H, Ji H-S, Choi M-S, Jiang W, Chu S-H, Piao R, Chin J-H, Kim J-A, Park BS, Seo HS, Jwa N-S, McCouch S, Koh H-J (2008) Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J 54(2):190ā€“204. https://doi.org/10.1111/j.1365-313X.2008.03405.x

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40(11):1370ā€“1374. https://doi.org/10.1038/ng.220

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y (2014) Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46(4):398ā€“404. https://doi.org/10.1038/ng.2923

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. She K-C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22(10):3280ā€“3294. https://doi.org/10.1105/tpc.109.070821

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Sun WQ, Zhou QL, Yao Y, Qiu XJ, Xie K, Yu SB (2015) Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice. PLoS One 10(3):e0122013

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  80. Zuo JR, Li JY (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99ā€“118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Zheng J, Zhang YD, Wang CL (2015) Molecular functions of genes related to grain shape in rice. Breed Sci 65(2):120ā€“126

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet. https://doi.org/10.1038/ng.3346 http://www.nature.com/ng/journal/vaop/ncurrent/abs/ng.3346.html - supplementary-information

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet. https://doi.org/10.1038/ng.3352 http://www.nature.com/ng/journal/vaop/ncurrent/abs/ng.3352.html - supplementary-information

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Miura K, Matsuoka M (2015) Rice genetics: control of grain length and quality. Nat Plants 1:15112. https://doi.org/10.1038/nplants.2015.112

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. The 3000 Rice Genomes Project (2014) The 3,000 rice genomes project. GigaScience 3:7. https://doi.org/10.1186/2047-217X-3-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  86. Hertog MLATM, Rudell DR, Pedreschi R, Schaffer RJ, Geeraerd AH, Nicolai BM, Ferguson I (2011) Where systems biology meets postharvest. Postharvest Biol Technol 62(3):223ā€“237

    ArticleĀ  Google ScholarĀ 

  87. Bhattacharya KR (2011) 13 - Analysis of rice quality. In: Bhattacharya KR (ed) Rice quality. Woodhead Publishing, Cambridge, UK, pp 431ā€“530. https://doi.org/10.1533/9780857092793.431

    ChapterĀ  Google ScholarĀ 

  88. Juliano BO (2007) Rice chemistry and quality. Philippine Rice Research Institute, Munoz, Nueva Ecija

    Google ScholarĀ 

  89. Bergman CJ, Bhattacharya KR, Ohtsubo K (2004) Rice end-use quality analysis. In: Champagne ET (ed) Rice chemistry and technology, 3rd edn. The American Association of Cereal Chemists, St, Paul. MN

    Google ScholarĀ 

Download references

Acknowledgments

This work has been supported under the CGIAR thematic area Global Rice Agri-Food System CRP, RICE, Stress-Tolerant Rice for Africa and South Asia (STRASA) Phase III, and Australian Centre for International Agricultural Research (Project ID CIM/2016/046) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese Sreenivasulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Butardo, V.M., Sreenivasulu, N. (2019). Improving Head Rice Yield and Milling Quality: State-of-the-Art and Future Prospects. In: Sreenivasulu, N. (eds) Rice Grain Quality. Methods in Molecular Biology, vol 1892. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8914-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8914-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8912-6

  • Online ISBN: 978-1-4939-8914-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics