Skip to main content

Improvement of Rice Quality: The New Revolution

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Rice is the staple crop for more than half of the world population. Along with yield, the grain quality of rice is also the principal requirement for producers and consumers. The quality of the grain depends on a combination of several traits including environmental factors. Both conventional and transgenic approaches are used for the quality improvement of rice. Genetic engineering has provided new tools for effectively ensuring food and nutritional security to improve agriculture across the world. With the recent advances in analytical tools, molecular markers, applied genomics, proteomics, and metabolomics, the scope for improving grain and nutritional quality in rice, and combining that with high yield, seems more promising than before. The modification of product quality characteristics using gene technology depends on a well-established understanding of the pathways for biosynthesis of plant products. There is an urgent need to boost more research in this field to help people in understanding the relationship between diet and health, and to ensure that everyone benefits from the genomic revolution. This chapter provides insights into how to link grain quality attributes and sensory perception to support breeding superior rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad HM, Rahman MU, Azeem F, Ali Q (2015) QTL mapping for the improvement of drought tolerance in cereal crops: a review. Life Sci J 12(4s):102–108

    CAS  Google Scholar 

  • Akhtar S, Shahid AA, Rao AQ, Bajwa KS, Muzaffar A, Latif A, Husnain T (2014) Genetic effects of Calotropis procera CpTIP1 gene on fiber quality in cotton (Gossypiumhirsutum). Adv Life Sci 1(4):223–230

    Google Scholar 

  • Ali Q, Ahsan M, Tahir MHN, Elahi M, Farooq J, Waseem M (2011) Gene expression and functional genomic approach for abiotic stress tolerance in different crop species. Int J Agro Vet Med Sci 5(2):221–248

    Google Scholar 

  • Amin H, Arain BA, Amin F, Surhio MA (2014) Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress. Adv Life Sci 1(4):231–241

    Google Scholar 

  • Asante MA (2017) Breeding rice for improved grain quality. In: Advances in international rice research. IntechOpen, London, pp 69–89. https://doi.org/10.5772/66684

    Chapter  Google Scholar 

  • Bao JS (2012) Towards understanding of the genetic and molecular basis of eating and cooking quality of rice. Cereal Foods World 57:148–156

    Article  CAS  Google Scholar 

  • Bao JS (2014) Genes and QTLs for rice grain quality improvement. In: Yan WG, Bao JS (eds) Rice germplasm, genetics and improvement. InTech, Rijeka, Croatia, pp p239–p278

    Google Scholar 

  • Bao J (2019) Biotechnology for rice grain quality improvement. In: Rice. AACC International Press, St. Paul, MN, pp 443–471

    Chapter  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  CAS  Google Scholar 

  • Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit Rev Food Sci Nutr 57(11):2455–2481. https://doi.org/10.1080/10408398.2015.1084992

    Article  CAS  Google Scholar 

  • Brar DS, Virk PS, Grewal D, Slamet-Loedin I, Fitzgerald M, Khush GS (2012) Breeding rice varieties with improved grain and nutritional quality. Qual Assur Saf Crops Foods 4:137

    Article  Google Scholar 

  • Buttery RG, Ling LC, Juliano BO, Turnbaugh JG (1983) Cooked rice aroma and 2-acetyl-1 pyrroline. J Agric Food Chem 31(4):823–826

    Article  CAS  Google Scholar 

  • Calingacion MN, Boualaphanh C, Daygon VD, Anacleto R, Sackville Hamilton R, Biais B, Deborde C, Maucourt M, Moing A, Mumm R, de Vos RCH, Erban A, Kopka J, Hansen TH, Laursen KH, Schjoerring JK, Hall RD, Fitzgerald MA (2012) A genomics and multi platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics 8:771–783

    Article  CAS  Google Scholar 

  • Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD et al (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9:e85106. https://doi.org/10.1371/journal.pone.0085106

    Article  CAS  Google Scholar 

  • Calingacion M, Fang L, Quiatchon-Baeza L, Mumm R, Riedel A, Hall RD, Fitzgerald M (2015) Delving deeper into technological innovations to understand differences in rice quality. Rice 8:10

    Article  Google Scholar 

  • Chandler JW (2009) Local auxin production: a small contribution to a big field. Bioessays 31(1):60–70

    Article  CAS  Google Scholar 

  • Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH et al (2016) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268

    Article  CAS  Google Scholar 

  • Chen MH, Bergman C, Pinson S, Fjellstrom RG (2008) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J Cereal Sci 47:536–545

    Article  CAS  Google Scholar 

  • Chen J, Zhang J, Liu H, Hu Y, Huang Y (2012) Molecular strategies in manipulation of the starch synthesis pathway for improving storage starch content in plants (review and prospect for increasing storage starch synthesis). Plant Physiol Biochem 61:1–8

    Article  CAS  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26(6):573–582

    Article  CAS  Google Scholar 

  • Dar AI, Saleem F, Ahmad M, Tariq M, Khan A, Ali A, Tabassum B, Ali Q, Khan GA, Rashid B, Nasir IA, Husnain T (2014) Characterization and efficiency assessment of PGPR for enhancement of rice (Oryza sativa L.) yield. Adv Life Sci 2(1):38–45

    Google Scholar 

  • Degenkolbe T, Do PT, Kopka J, Zuther E, Hincha DK, Kohl KI (2013) Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. PLoS One 8:e63637

    Article  CAS  Google Scholar 

  • Deng ZY, Gong CY, Wang T (2013) Use of proteomics to understand seed development in rice. Proteomics 13:1784–1800

    Article  CAS  Google Scholar 

  • Dias J, Ortiz R (2012) Transgenic vegetable crops: progress, potentials and prospects. Plant Breed Rev 35:151–246

    Google Scholar 

  • Duan M, Sun SS (2005) Profiling the expression of genes controlling rice grain quality. Plant Mol Biol 59:165–178

    Article  CAS  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51(1):487–496

    Article  CAS  Google Scholar 

  • FAO (2009) The state of food insecurity in the world 2009. FAO. ftp://ftp.fao.org/docrep/fao/012/i0876e/i0876e.pdf

  • Feng Z, Zhang B, Ding W, Liu X, Yang D, Wei P et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  Google Scholar 

  • Filippis D (2013) Bioinformatic tools in crop improvement. In: Hakeem KR et al (eds) Crop improvement. Springer Science+Business Media, New York. https://doi.org/10.1007/978-1-4614-7028-1_2

    Chapter  Google Scholar 

  • Fitgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14(3):133–139

    Article  CAS  Google Scholar 

  • Fu FF, Xue HW (2010) Coexpression analysis identifies Rice starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927–938

    Article  CAS  Google Scholar 

  • Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K (2007) The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J 49:91–102

    Article  CAS  Google Scholar 

  • Gao ZY, Zheng DL, Cui X, Zhou YH, Yan MX, Huang DN et al (2003) Map-based cloning of the alk gene, which controls the gelatinization temperature of rice. Sci China Life Sci 46(6):661–668

    Article  CAS  Google Scholar 

  • Gearing ME (2015) Good as gold: can golden rice and other biofortifed crops prevent malnutrition? Science in the News. Harvard University, Cambridge, MA. http://sitn.hms.harvard.edu/

    Google Scholar 

  • Gerstein M, Jansen R (2000) The current excitement in bioinformatics-analysis of whole genome expression data: how does it relate to protein structure and function. Curr Opin Struct Biol 10:574–584

    Article  CAS  Google Scholar 

  • Ghosh P, Roychoudhury A (2018) Differential levels of metabolites and enzymes related to aroma formation in aromatic indica rice varieties: comparison with non-aromatic varieties. 3 Biotech 8:25

    Article  Google Scholar 

  • Godfray HC, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc B Biol Sci 369(1639):20120273

    Article  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortifcation of the rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Goufo P, Falco V, Brites C, Wessel DF, Kratz S, Rosa EA, Carranca C, Trindade H (2014) Effect of elevated carbon dioxide concentration on rice quality: nutritive value, color, milling, cooking, and eating qualities. Cereal Chem 91:513–521

    Article  CAS  Google Scholar 

  • Halford NG, Curtis TY, Chen Z, Huang J (2014) Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety. J Exp Bot 66(5):1145–1156

    Article  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4(6):226–231

    Article  CAS  Google Scholar 

  • Houston DF, Iwasaki T, Mohammad A, Chen L (1968) Radial distribution of protein by solubility classes in the milled rice kernel. J Agric Food Chem 16:720–724

    Article  CAS  Google Scholar 

  • Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9:943–945. https://doi.org/10.1016/j.molp.2016.03.003

    Article  CAS  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Quin Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497–501

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jairin J, Teangdeerith S, Leelagud P, Kothcharerk J, Sansen K, Yi M, Vanavichit A, Toojinda T (2009) Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection. Field Crop Res 110:263–271

    Article  Google Scholar 

  • Jantaboon J, Siangliw M, Im-mark S, Jamboonsri W, Vanavichit A, Toojinda T (2011) Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crop Res 123:206–213

    Article  Google Scholar 

  • Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2012) Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnol Adv 30:1059–1070

    Article  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  Google Scholar 

  • Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF (2003) A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Sci 165:359–364

    Article  CAS  Google Scholar 

  • Jin L, Lu Y, Shao YF, Zhang G, Xiao P, Shen SQ, Corke H, Bao JS (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164

    Article  CAS  Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive over expression of the OsNAS gene family reveals single gene strategies for effective iron- and zinc-biofortifcation of rice endosperm. PLoS One 6(9):e24476

    Article  CAS  Google Scholar 

  • Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T (2016) Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice 9:26

    Article  Google Scholar 

  • Karlowski WM, Schoof H, Janakiraman V, Stuempflen V, Mayer KFX (2003) MOsDB: an integrated information resource for rice genomics. Nucleic Acids Res 31:90–192

    Article  CAS  Google Scholar 

  • Kawakatsu T, Takaiwa F (2010) Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechol J 8:939–953

    Article  CAS  Google Scholar 

  • Khan MH, Dar ZA, Dar SA (2015) Breeding strategies for improving rice yield—a review. Agri Sci 6:467–478

    CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030? Plant Mol Biol 59:1–6

    Article  CAS  Google Scholar 

  • Kim YJ, Choi SH, Park BS, Song JT, Kim MC, Koh HJ, Seo HS (2009) Proteomic analysis of the rice seed for quality improvement. Plant Breed 128:541–550

    Article  CAS  Google Scholar 

  • Kim JK, Park SY, Lim SH, Yeo Y, Cho HS, Ha SH (2013) Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci 57:14–20

    Article  CAS  Google Scholar 

  • Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K (2015) Using metabolomic approaches to explore chemical diversity in rice. Mol Plant 8:58–67

    Article  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  Google Scholar 

  • Li J, Norville JE, Aach J, McCormack M, Zhang D, Bush J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  Google Scholar 

  • Li M, Li X, Zhou Z, Wu P, Fang M, Pan X et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in Rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    Google Scholar 

  • Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z et al (2017) High-efficiency breeding of early maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics 44:175–178

    Article  Google Scholar 

  • Lin Z, Zhang X, Yang X, Li G, Tang S, Wang S, Ding Y, Liu Z (2014) Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly. BMC Plant Biol 14:163

    Article  Google Scholar 

  • Lin Z, Zhang X, Wang Z, Jiang Y, Liu Z, Alexander D, Li G, Wang S, Ding Y (2017) Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains. BMC Plant Biol 17(1):39

    Article  CAS  Google Scholar 

  • Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet 93(7):1145–1151

    Article  CAS  Google Scholar 

  • Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J et al (2015) TALEN based mutagenesis of Lipoxygenase LOX3 enhances the storage tolerance of Rice (Oryza sativa) seeds. PLoS One 10:e0143877

    Article  CAS  Google Scholar 

  • Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771

    Article  CAS  Google Scholar 

  • Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci U S A 107:5226–5231

    Article  CAS  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  Google Scholar 

  • Miao C, Xiao L, Hua K, Zoua C, Zhao Y, Bressanb RA et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 115:6058–6063

    Article  CAS  Google Scholar 

  • Miglani GS (2017) Genome editing in crop improvement: present scenario and future prospects. J Crop Improv 31:453–559

    Article  CAS  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.01361

    Article  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130(3):1152–1161

    Article  CAS  Google Scholar 

  • Mukamuhirwa A, Hovmalm HP, Ortiz R, Nyamangyoku O, Johansson E (2018) Quality and grain yield attributes of Rwandan rice (Oryza sativa L.) cultivars grown in a biotron applying two NPK levels. J Food Qual 2018:5134569

    Article  CAS  Google Scholar 

  • Mumm R, Hageman JA, Calingacion MN, de Vos RCH, Jonker HH, Erban A, Kopka J, Hansen TH, Laursen KH, Schjoerring JK, Ward JL, Beale MH, Jongee S, Rauf A, Habibi F, Indrasari SD, Sakhan S, Ramli A, Romero M, Reinke RF, Ohtsubo K, Boualaphanh C, Fitzgerald MA, Hall RD (2016) Multi-platform metabolomics analyses of a broad collection of fragrant and nonfragrant rice varieties reveals the high complexity of grain quality characteristics. Metabolomics 12:38

    Article  CAS  Google Scholar 

  • Nekrasov V, Staskawicz B, Jones WD, Jonathan DG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594

    Article  CAS  Google Scholar 

  • Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Hirai MY, Saito K (2013) A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 4:1510

    Article  CAS  Google Scholar 

  • Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24(3):327–334

    Article  CAS  Google Scholar 

  • Pandey MK, Rani NS, Sundaram RM, Laha GS, Madhav MS, Rao KS, Sudharshan I, Hari Y, Varaprasad GS, Rao LVS, Suneetha K, Sivaranjani AKP, Viraktamath BC (2013) Improvement of two traditional basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol Breed 31:239–246

    Article  Google Scholar 

  • Peng S, Tang Q, Zou Y (2009) Current status and challenges of rice production in China. Plant Prod Sci 12:3–8

    Article  Google Scholar 

  • Puspito AN, Rao AQ, Hafeez MN, Iqbal MS, Bajwa KS, Ali Q, Rashid B, Abbas MA, Latif A, Shahid AA, Nasir IA, Husnain T (2015) Transformation and evaluation of Cry1Ac+ Cry2A and GTGene in Gossypium hirsutum L. Front Plant Sci 6:943. https://doi.org/10.3389/fpls.2015.00943

    Article  Google Scholar 

  • Qamar Z, Aaliya K, Nasir IA, Farooq AM, Tabassum B, Qurban A, Ali A, Awan MF, Tariq M, Husnain T (2015) An overview of genetic transformation of glyphosate resistant gene in Zea mays. Nat Sci 13(3):80–90

    Google Scholar 

  • Rao VT, Mohan YC, Bhadru D, Bharathi D, Venkanna V (2014) Genetic variability and association analysis in rice. Int J Appl Biol Pharma Tech 5:63–65

    Google Scholar 

  • Rashid B, Tariq M, Khalid A, Shams F, Ali Q, Ashraf F, Ghaffar I, Khan MI, Rehman R, Husnain T (2017) Crop improvement: new approaches and modern techniques. Plant Gene Trait 8(3):18–30

    Google Scholar 

  • Roychoudhury A, Datta K, Datta SK (2011) Abiotic stress in plants: from genomics to metabolomics. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science, Sharjah, pp 91–120

    Google Scholar 

  • Roychoudhury A, Das K, Satyaki Ghosh S, Mukherjee RN, Banerjee R (2012) Transgenic plants: benefits and controversies. J Bot Soc Bengal 66:29–35

    Google Scholar 

  • Sah SA, Kaur A, Kaur G, Cheema GS (2014) Genetic transformation of Rice: problems, progress and prospects. J Rice Res 3:132. https://doi.org/10.4172/2375-4338.1000132

    Article  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T (2006) Erect leaves caused by brassino-steroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  CAS  Google Scholar 

  • Salgotra RK, Gupta BB, Millwood RJ, Balasubramaniam M, Stewart CN Jr (2012) Introgression of bacterial leaf blight resistance and aroma genes using functional marker assisted selection in rice (Oryza sativa L.). Euphytica 187:313–323

    Article  CAS  Google Scholar 

  • Sayer J, Cassman KG (2013) Agricultural innovation to protect the environment. Proc Natl Acad Sci 110(21):8345–8348

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al (2013) Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotechnol 31:686–688

    Article  CAS  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800

    Article  CAS  Google Scholar 

  • Shao G, Xie L, Jiao G, Wei X, Sheng Z, Tang S et al (2017) CRISPR/CAS9- mediated editing of the fragrant gene Badh2 in Rice. Chin J Rice Sci 31:216–222

    Google Scholar 

  • Shi WW, Yang Y, Chen SH, Xu ML (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22(2):185–192

    Article  CAS  Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Krishnan SG, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK (2012) Incorporation of blast resistance into “PRR78”, an elite basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res 128:8–16

    Article  Google Scholar 

  • Song EH, Kim HJ, Jeong J, Chung HJ, Kim HY, Bang E, Hong YS (2016) A 1H HR-MAS NMR-based metabolomic study for metabolic characterization of rice grain from various Oryza sativa L. cultivars. J Agric Food Chem 64:3009–3016

    Article  CAS  Google Scholar 

  • Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Ri X, Prentice IC (2013) Multiple greenhousegas feedbacks from the land biosphere under future climate change scenarios. Nat Clim Change 3:666–672

    Article  CAS  Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Google Scholar 

  • Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64(2):245–252. https://doi.org/10.1016/j.ecolecon.2007.09.020

    Article  Google Scholar 

  • Tariq M, Ali Q, Khan A, Khan GA, Rashid B, Rahi MS, Ali A, Nasir IA, Husnain T (2014) Yield potential study of Capsicum annuum L. under the application of PGPR. Adv Life Sci 1(4):202–207

    Google Scholar 

  • Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C et al (2009) Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci U S A 106(51):21760–21765

    Article  CAS  Google Scholar 

  • Tyagi AK, Khurana JP, Khurana P, Raghuvanshi S, Gaur A, Kapur A, Gupta V, Kumar D, Ravi V, Vij S, Khurana P, Sharma S (2004) Structural and functional analysis of rice genome. J Genet 83:79–99

    Article  CAS  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG et al (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7(4):613–622

    Article  CAS  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhao Y, Liu J, Gao C et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  Google Scholar 

  • Wang F, Wang C, Liu P, Lei P, Hao W, Gao Y et al (2016) Enhanced rice blast resistance by CRISPR/ Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

    Article  CAS  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  Google Scholar 

  • Wijerathna YMAM (2015) Marker assisted selection: biotechnology tool for rice molecular breeding. Adv Crop Sci Tech 3:4

    Google Scholar 

  • Win KM, Korinsak S, Jantaboon J, Siangliw M, Lanceras-Siangliw J, Sirithunya P, Vanavichit A, Pantuwan G, Jongdee B, Sidhiwong N, Toojinda T (2012) Breeding the Thai jasmine rice variety KDML105 for non-age-related broad-spectrum resistance to bacterial blight disease based on combined marker-assisted and phenotypic selection. Field Crop Res 137:186–194

    Article  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95(5):707–735

    Article  CAS  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR/Cas system in rice. Rice 7:1–4

    Article  CAS  Google Scholar 

  • Xu R, Yang Y, Qin R, Li H, Qiu C, Li L et al (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43:529–532

    Article  Google Scholar 

  • Yazaki J, Kishimoto N, Ishikawa M, Kikuchi S (2002) Rice expression database: the gateway to rice functional genomics. Trends Plant Sci 7:563–564

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  CAS  Google Scholar 

  • Yi M, New KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crop Res 113:178–186

    Article  Google Scholar 

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin containing particles during seed development in rice. Plant Physiol 119:65–72

    Article  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GKS, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  CAS  Google Scholar 

  • Yu TQ, Jiang W, Ham TH, Chu SH, Lestari P, Lee JH, Kim MK, Xu FR, Han L, Dai LY, Koh HJ (2008) Comparison of grain quality traits between japonica rice cultivars from Koreaand Yunnan province of China. J Crop Sci Biotechnol 11:135–140

    Google Scholar 

  • Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx b pre-mRNAs in rice (Oryza sativa L.). Plant Mol Biol 65:501–509

    Article  CAS  Google Scholar 

  • Zhang W, Bi J, Chen L, Zheng L, Ji S, Xia Y, Xie K, Zhao Z, Wang Y, Liu L, Jiang L, Wan J (2008) QTL mapping for crude protein and protein fraction contents in rice (Oryza sativa L.). J Cereal Sci 48:539–547

    Article  CAS  Google Scholar 

  • Zhao X, Fitzgerald M (2013) Climate change: implications for the yield of edible rice. PLoS One 8:e66218

    Article  CAS  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  CAS  Google Scholar 

  • Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370:511–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, D., Mishra, S.S., Behera, P.K. (2020). Improvement of Rice Quality: The New Revolution. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_5

Download citation

Publish with us

Policies and ethics