Skip to main content

A Food Polymer Science Approach to Structure-Property Relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

Descriptions of the functional significance of carbohydrates based on the familiar equilibrium thermodynamics of very dilute solutions fail for pragmatical time scales and conditions, which are far from equilibrium. This is not too surprising, since limiting partial-molar properties reflect the independent behavior of solute in the limit of infinite dilution where free volume is maximum at a given temperature, while Tg′-Wg′ properties reflect the cooperative behavior of solute-plasticizer blends at the limiting minimum value of free volume to observe relaxation within experimental time scales. Carbohydrate-water systems, with well-characterized structure and MW above and below the entanglement limit, provide a unique framework for the investigation of non-equilibrium behavior. Thermal analysis by DSC reveals the central role of water as a plasticizer for carbohydrates and of the glass transition as a physicochemical parameter that governs their properties, processing, and stability. A classical polymer science approach is used to study structure-property relationships of carbohydrates as water-compatible food polymers, which are treated as homologous systems of polymers, oligomers, and monomers with their plasticizers and solvents. Mechanical relaxation behavior is described by a “transformation map” of the critical variables of moisture content, temperature, and time. The glass curve is a reference contour, which represents the limiting isogram for free volume, local viscosity, relaxation rates, and rotational and translational mobility. Map domains are discussed as aspects of “water dynamics,” to dispel the myth of “bound water,” and “glass dynamics,” to relate to macroscopic structure and collapse phenomena. A particular glass with invariant composition and Tg (prepared by freeze-concentration) is identified as a pivotal and practical reference state. The Tg observed during DSC analysis is often an effective Tg, resulting from instantaneous relative relaxation rates and non-uniform distribution of total sample moisture. Non-equilibrium melting, annealing, and gelation/recrystallization of kinetically metastable, partially crystalline carbohydrate systems exhibit non-Arrhenius kinetics which depend on the magnitude of ΔT above the appropriate Tg, as defined by WLF relaxation transformations. Thermally reversible aqueous gels (crystallized from an under-cooled, rubbery melt) are described by a “fringed micelle” structural model for a three-dimensional polymer network, composed of microcrystalline junction zones crosslinking plasticized amorphous regions of flexible-coiled, entangled chain segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Franks, M.H. Asquith, C.C. Hammond, H.B. Skaer, and P. Echlin, Polymeric cryoprotectants in the preservation of biological ultrastructure. I., J. Microsc. 110:223 (1977).

    Article  CAS  Google Scholar 

  2. F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water: A Comprehensive Treatise,” Vol. 7, F. Franks, ed., Plenum Press, New York (1982).

    Google Scholar 

  3. F. Franks, “Biophysics and Biochemistry at Low Temperatures,” Cambridge University Press, Cambridge (1985).

    Google Scholar 

  4. F. Franks, Complex aqueous systems at subzero temperatures, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  5. F. Franks, Metastable water at subzero temperatures. J. Microsc. 141:243 (1986).

    Article  CAS  Google Scholar 

  6. F. Franks, Improved freeze-drying: an analysis of the basic scientific principles, Process Biochem. 24 (1):R3 (1989).

    Google Scholar 

  7. L. Finegold, F. Franks, and R.H.M. Hatley, Glass/rubber transitions and heat capacities of binary sugar blends, J. Chem. Soc. Faraday Trans. I 85:2945 (1989).

    Article  CAS  Google Scholar 

  8. L. SladeandH. Levine, Thermal analysis of starch and gelatin, in: “Proceedings 13th NATAS Conference,” A.R. McGhie, ed., NATAS, Philadelphia (1984).

    Google Scholar 

  9. L. Slade, Starch properties in processed foods: staling of starch-based products, presented at AACC 69th Ann. Meet., Minneapolis, abs. 112 (1984).

    Google Scholar 

  10. T.J. Maurice, L. Slade, C. Page, and R. Sirett, Polysaccharide-water interactions — thermal behavior of rice starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht, (1985).

    Google Scholar 

  11. C.G. Biliaderis, C.M. Page, L. Slade, and R.R. Sirett, Thermal behavior of amylose-lipid complexes, Carbohvdr. Polym. 5:367 (1985).

    Article  CAS  Google Scholar 

  12. L. Slade, R. Altomare, R. Oltzik, and D.G. Medcalf, Accelerated staling of starch-based food products, U.S. patent 4,657,770 (1987).

    Google Scholar 

  13. L. Slade and H. Levine, Non-equilibrium melting of native granular starch. Part I. Temperature location of the glass transition associated with gelatinization of A-type cereal starches, Carbohydr. Polym. 8:183 (1988).

    Article  CAS  Google Scholar 

  14. L. Slade and H. Levine, Intermediate moisture systems; concentrated and supersaturated solutions; pastes and dispersions; water as plasticizer; the mystique of “bound” water; thermodynamics versus kinetics, presented at Faraday Divion, Royal Society of Chemistry Discussion Conference — Water Activity: A Credible Measure of Technological Performance and Physiological Viability?, Cambridge (1985).

    Google Scholar 

  15. L. Slade and H. Levine, Non-equilibrium behavior of small carbohydrate-water systems, Pure Appl. Chem. 60:1841 (1988).

    Article  CAS  Google Scholar 

  16. L. Slade and H. Levine, Polymer-chemical properties of gelatin in foods, in: “Advances in Meat Research, Vol. 4 — Collagen as a Food,” A.M. Pearson, T.R. Dutson, and A. Bailey, eds., AVI, Westport (1987).

    Google Scholar 

  17. B.A. Cole, H.I. Levine, M.T. McGuire, K.J. Nelson, and L. Slade, Soft, frozen dessert formulation, U.S. patent 4,374,154 (1983).

    Google Scholar 

  18. B.A. Cole, H.I. Levine, M.T. McGuire, K.J. Nelson, and L. Slade, Soft, frozen dessert formulation, U.S. patent 4,452,824 (1984).

    Google Scholar 

  19. T.W. Schenz, M.A. Rosolen, H. Levine, and L. Slade, DMA of frozen aqueous solutions, in: “Proceedings 13th NATAS Conference,” A.R. McGhie, ed., NATAS, Philadelphia (1984).

    Google Scholar 

  20. H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).

    Article  CAS  Google Scholar 

  21. H. Levine and L. Slade, Collapse phenomena — a unifying concept for interpreting the behavior of low-moisture foods, in: “Food Structure — Its Creation and Evaluation,” J.R. Mitchell and J.M.V. Blanshard, eds., Butterworths, London (1988).

    Google Scholar 

  22. H. Levine and L. Slade, Principles of cryostabilization technology from structure/property relationships of water-soluble food carbohydrates — review, Cryo-Lett. 9:21 (1988).

    CAS  Google Scholar 

  23. H. Levine and L. Slade, Thermomechanical properties of small carbohydrate-water glasses and “rubbers”: kinetically-metastable systems at subzero temperatures, J. Chem. Soc. Faraday Trans. I 84:2619 (1988).

    Article  CAS  Google Scholar 

  24. H. Levine and L. Slade, A food polymer science approach to the practice of cryostabilization technology, Comments Agric. Food Chem. 1:315 (1989).

    CAS  Google Scholar 

  25. H. Levine and L. Slade, Response to the letter by Simatos, Blond, and Le Meste on the relation between glass transition and stability of a frozen product, Cryo-Lett. 10:347 (1989).

    Google Scholar 

  26. H. Levine and L. Slade, Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, in: “Water Science Reviews,” Vol. 3, F. Franks, ed., Cambridge University Press, Cambridge (1988).

    Google Scholar 

  27. L. Slade, H. Levine, and J.W. Finley, Protein-water interactions: water as a plasticizer of gluten and other protein polymers, in: “Protein Quality and the Effects of Processing,” D. Phillips and J.W. Finley, eds., Marcel Dekker, New York (1989).

    Google Scholar 

  28. H. Levine and L. Slade, Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products, in: “Dough Rheology and Baked Product Texture: Theory and Practice,” H. Faridi and J.M. Faubion, eds., Van Nostrand Rein-hold/AVI, New York (1989).

    Google Scholar 

  29. L. Slade and H. Levine, Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety, CRC Crit. Revs. Food Sci. Nutr.: in press (1990).

    Google Scholar 

  30. L. Slade and H. Levine, Structural stability of intermediate moisture foods — a new understanding?, in: “Food Structure — Its Creation and Evaluation,” J.R. Mitchell and J.M.V. Blanshard, eds., Butter-worths, London (1988).

    Google Scholar 

  31. H. Levine and L. Slade, Interpreting the behavior of low-moisture foods, in: “Water and Food Quality,” T.M. Hardman, ed., Elsevier, London (1989).

    Google Scholar 

  32. H. Levine and L. Slade, Cryostabilization technology: thermoanalytical evaluation of food ingredients and systems, in: “Thermal Analysis of Foods,” C.-Y. Ma and V.R. Harwalkar, eds., Elsevier Applied Science, London (1990).

    Google Scholar 

  33. L. Slade and H. Levine, Recent advances in starch retrogradation, in: “Industrial Polysaccharides — The Impact of Biotechnology and Advanced Methodologies,” S.S. Stivala, V. Crescenzi, and I.C.M. Dea, eds., Gordon and Breach Science, New York (1987).

    Google Scholar 

  34. L. Slade and H. Levine, Thermal analysis of starch, in: “1988 CRA Scientific Conference,” Corn Refiners Assoc., Washington, D.C. (1988).

    Google Scholar 

  35. L. Slade and H. Levine, A food polymer science approach to selected aspects of starch gelatinization and retrogradation, in: “Frontiers in Carbohydrate Research-1: Food Applications,” R.P. Millane, J.N. Be-Miller, and R. Chandrasekaran, eds., Elsevier Applied Science, London (1989).

    Google Scholar 

  36. G.W. White and S.H. Cakebread, The glassy state in certain sugar-containing food products, J. Food Technol. 1:73 (1966).

    Article  CAS  Google Scholar 

  37. C. van den Berg, Vapour sorption equilibria and other water-starch interactions; a physico-chemical approach, Doctoral Thesis, Agricultural Univ., Wageningen (1981).

    Google Scholar 

  38. C. van den Berg, On the significance of water activity in low moisture systems; water vapor sorption equilibrium and hysteresis; the starch/water system as a model, presented at Faraday Divion, Royal Society of Chemistry Discussion Conference — Water Activity: A Credible Measure of Technological Performance and Physiological Viability?, Cambridge (1985).

    Google Scholar 

  39. C. van den Berg, Water activity, in: “Concentration and Drying of Foods,” D. MacCarthy, ed., Elsevier Applied Science, London (1986).

    Google Scholar 

  40. C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).

    Article  CAS  Google Scholar 

  41. J.M.V. Blanshard, The significance of the structure and function of the starch granule in baked products, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).

    Google Scholar 

  42. J.M.V. Blanshard, Starch granule structure and function: physicochemical approach, in: “Starch: Properties and Potential,” T. Galliard, ed., John Wiley & Sons, New York (1987).

    Google Scholar 

  43. J.M.V. Blanshard, Elements of cereal product structure, in: “Food Structure — Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).

    Google Scholar 

  44. J.M.V. Blanshard and F. Franks, Ice crystallization and its control in frozen food systems, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).

    Chapter  Google Scholar 

  45. R.D.L. Marsh and J.M.V. Blanshard, The application of polymer crystal growth theory to the kinetics of formation of the B-amylose polymorph in a 50% wheat starch gel, Carbohvdr. Polym. 9:301 (1988).

    Article  CAS  Google Scholar 

  46. S.F. Edwards, P.J. Lillford, and J.M.V. Blanshard, Gels and networks in practice and theory, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).

    Google Scholar 

  47. S. Ablett, G.E. Attenburrow, and P.J. Lillford, The significance of water in the baking process, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).

    Google Scholar 

  48. G.E. Attenburrow, R.M. Goodband, L.J. Taylor, and P.J. Lillford, Structure, mechanics, and texture of a food sponge, J. Cereal Sci. 9:61 (1989).

    Article  Google Scholar 

  49. P.J. Lillford, The polymer/water relationship — its importance for food structure, In: “Food Structure — Its Creation and Evaluation,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1988).

    Google Scholar 

  50. M. Karel, Effects of water activity and water content on mobility of food components, and their effects on phase transitions in food systems, In: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  51. M. Karel, Control of lipid oxidation in dried foods, in: “Concentration and Drying of Foods,” D. MacCarthy, ed., Elsevier Applied Science, London (1986).

    Google Scholar 

  52. M. Karel and R. Langer, Controlled release of food additives, in: “Flavor Encapsulation,” ACS Symp. Ser. 370, S.J. Risch and G.A. Reineccius, eds., American Chemical Society, Washington, D.C. (1988).

    Google Scholar 

  53. D. Simatos and M. Karel, Characterizing condition of water in foods: physico-chemical aspects, in: “Food Preservation by Moisture Control,” C.C. Seow, ed., Elsevier Applied Science, London (1988).

    Google Scholar 

  54. D. Simatos, G. Blond, and M. Le Meste, Relation between glass transition and stability of a frozen product, Cryo-Lett. 10:77 (1989).

    Google Scholar 

  55. R.C. Hoseney, K. Zeleznak, and C.S. Lai, Wheat gluten: a glassy polymer, Cereal Chem. 63:285 (1986).

    Google Scholar 

  56. D.A. Yost and R.C. Hoseney, Annealing and glass transition of starch, Starke 38:289 (1986).

    Article  CAS  Google Scholar 

  57. K.J. Zeleznak and R.C. Hoseney, The glass transition in starch, Cereal Chem. 64:121 (1987).

    CAS  Google Scholar 

  58. K.J. Zeleznak and R.C. Hoseney, Characterization of starch from bread aged at different temperatures, Starke 39:231 (1987).

    Article  Google Scholar 

  59. L.C. Doescher, R.C. Hoseney, and G.A. Milliken, Mechanism for cookie dough setting, Cereal Chem. 64:158 (1987).

    Google Scholar 

  60. S.G. Ring, P. Colonna, K.J. l’Anson, M.T. Kalichevsky, M.J. Miles, V.J. Morris, and P.D. Orford, Gelation and crystallization of amylopectin, Carbohydr. Res. 162:277 (1987).

    Article  CAS  Google Scholar 

  61. P.D. Orford, R. Parker, S.G. Ring, and A.C. Smith, The effect of water as a diluent on the glass transition behavior of malto-oligosaccharides, amylose and amylopectin, Int. J. Biol. Macromol. 11:91 (1989).

    Article  CAS  Google Scholar 

  62. P.L. Russell, Gelatinization of starches of different amylose/amylopectin content — DSC study, J. Cereal Sci. 6:133 (1987).

    Article  CAS  Google Scholar 

  63. H.F. Zobel, Starch crystal transformations and their industrial importance, Starke 40:1 (1988).

    Article  CAS  Google Scholar 

  64. H.F. Zobel, S.N. Young, and L.A. Rocca, Starch gelatinization: an X-ray diffraction study, Cereal Chem. 65:443 (1988).

    CAS  Google Scholar 

  65. T. Soesanto and M.C. Williams, Volumetric interpretation of viscosity for concentrated and dilute sugar solutions, J. Phys. Chem. 85:3338 (1981).

    Article  CAS  Google Scholar 

  66. A.G. Atkins, Basic principles of mechanical failure in biological systems, in: “Food Structure and Behaviour,” J.M.V. Blanshard and P. Lillford, eds., Academic Press, London (1987).

    Google Scholar 

  67. S. Quinquenet, C. Grabielle-Madelmont, M. Ollivon, and M. Serpelloni, Influence of water on pure sorbitol polymorphism, J. Chem. Soc. Faraday Trans. I 84:2609 (1988).

    Article  CAS  Google Scholar 

  68. Y. Fujio and J.K. Lim, Correlation between the glass-transition point and color change of heat-treated gluten, Cereal Chem. 66:268 (1989).

    CAS  Google Scholar 

  69. E.A. Niediek, Effect of processing on the physical state and aroma sorption properties of carbohydrates, Food Technol. 42(11):81 (1988).

    Google Scholar 

  70. S. Bone and R. Pethig, Dielectric studies of the binding of water to lysozyme, J. Mol. Biol. 157:571 (1982).

    Article  CAS  Google Scholar 

  71. P.J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca (1953).

    Google Scholar 

  72. P.J. Flory, Introductory lecture — gels and gelling processes, Faraday Disc. Chem. Soc. 57:7 (1974).

    Article  CAS  Google Scholar 

  73. M.L. Williams, R.F. Landel, and J.D. Ferry, Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Amer. Chem. Soc. 77:3701 (1955).

    Article  CAS  Google Scholar 

  74. J.A. Brydson, The glass transition, melting point and structure, in: “Polymer Science,” A.D. Jenkins, ed., North Holland, Amsterdam (1972).

    Google Scholar 

  75. B. Wunderlich, “Macromolecular Physics, Vol. 1 — Crystal Structure, Morphology, Defects,” Academic Press, New York (1973).

    Google Scholar 

  76. B. Wunderlich, “Macromolecular Physics, Vol. 2 — Crystal Nucleation, Growth, Annealing,” Academic Press, New York (1976).

    Google Scholar 

  77. B. Wunderlich, “Macromolecular Physics, Vol. 3 — Crystal Melting,” Academic Press, New York (1980).

    Google Scholar 

  78. B. Wunderlich, The basis of thermal analysis, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).

    Google Scholar 

  79. J.D. Ferry, “Viscoelastic Properties of Polymers,” 3rd edn., John Wiley & Sons, New York (1980).

    Google Scholar 

  80. S.P. Rowland, ed., “Water in Polymers,” ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).

    Book  Google Scholar 

  81. J.K. Sears and J.R. Darby, “The Technology of Plasticizers,” Wiley-Interscience, New York (1982).

    Google Scholar 

  82. A. Eisenberg, The glassy state and the glass transition, in: “Physical Properties of Polymers,” J.E. Mark, A. Eisenberg, W.W. Graessley, L. Mandelkern, and J.L. Koenig, eds., American Chemical Society, Washington, D.C. (1984).

    Google Scholar 

  83. T.S. Ellis, Moisture-induced plasticization of amorphous polyamides and their blends, J. Appl. Polym. Sci. 36:451 (1988).

    Article  CAS  Google Scholar 

  84. W.W. Graessley, Viscoelasticity and flow in polymer melts and concentrated solutions, in: “Physical Properties of Polymers,” J.E. Mark, A. Eisenberg, W.W. Graessley, L. Mandelkern, and J.L. Koenig, eds., American Chemical Society, Washington, D.C. (1984).

    Google Scholar 

  85. F.W. Billmeyer, “Textbook of Polymer Science,” 3rd edn., Wiley-Interscience, New York (1984).

    Google Scholar 

  86. L.H. Sperling, “Introduction to Physical Polymer Science,” Wiley-Interscience, New York (1986).

    Google Scholar 

  87. A.G. Walton, Nucleation in liquids and solutions, in: “Nucleation,” A.C. Zettlemoyer, ed., Marcel Dekker, New York (1969).

    Google Scholar 

  88. J.M.G. Cowie, “Polymers: Chemistry and Physics of Modern Materials,” Intertext, New York (1973).

    Google Scholar 

  89. E.A. Turi, ed., “Thermal Characterization of Polymeric Materials,” Academic Press, Orlando (1981).

    Google Scholar 

  90. R.N. Haward, ed., “The Physics of Glassy Polymers,” Applied Science, London (1973).

    Google Scholar 

  91. W. Kauzmann, Nature of the glassy state and behavior of liquids at low temperatures. Chem. Rev. 43:219 (1948).

    Article  CAS  Google Scholar 

  92. S.E.B. Petrie, The problem of thermodynamic equilibrium in glassy polymers, in: “Polymeric Materials: Relationships Between Structure and Mechanical behavior,” E. Baer and S.V. Radcliffe, eds., American Society Metals, Metals Park, Ohio (1975).

    Google Scholar 

  93. D.R. Buchanan and J.P. Walters, Glass-transition temperatures of polyamide textile fibers. Part I: effect of water, Textile Res. J. 47:398 (1977).

    CAS  Google Scholar 

  94. A. Sharpies, Crystallinity, in: “Polymer Science,” A.D. Jenkins, ed., North Holland, Amsterdam (1972).

    Google Scholar 

  95. J.F. Fuzek, Glass transition temperature of wet fibers: its measurement and significance, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  96. P. Moy and F.E. Karasz, The interactions of water with epoxy resins, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  97. J.N. BeMiller, as reported by M.A. Hill, Carbohvdr. Polym. 10:64 (1989).

    Article  Google Scholar 

  98. C.Y. Ma and V.R. Harwalkar, eds., “Thermal Analysis of Foods,” Elsevier Applied Science, London (1989).

    Google Scholar 

  99. S.S. Kelley, T.G. Rials, and W.G. Glasser, Relaxation behavior of the amorphous components of wood, J. Materials Sci. 22:617 (1987).

    Article  CAS  Google Scholar 

  100. C.A.J. Hoeve and M.B.J.A. Hoeve, The glass point of elastin as a function of diluent concentration, Organ. Coat. Plast. Chem. 39:441 (1978).

    CAS  Google Scholar 

  101. A.P. MacKenzie, Non-equilibrium freezing behavior of aqueous systems, Phil. Trans. Royal Soc. London B. 278:167 (1977).

    Article  CAS  Google Scholar 

  102. W.J. Sichina, Predicting mechanical performance and lifetime of polymeric materials, Amer. Lab. 20(1):42 (1988).

    CAS  Google Scholar 

  103. A.P. MacKenzie, Collapse during freeze drying — qualitative and quantitative aspects, in: “Freeze Drying and Advanced Food Technology,” S.A. Goldlith, L. Rey, and W.W. Rothmayr, eds., Academic Press, New York (1975).

    Google Scholar 

  104. E.C. To and J.M. Flink, “Collapse”, a structural transition in freeze dried carbohydrates. I.-III., J. Food Technol. 13:551 (1978).

    Article  CAS  Google Scholar 

  105. J.M. Flink, Structure and structure transitions in dried carbohydrate materials, in: “Physical Properties of Foods,” M. Peleg and E.B. Bagley, eds., AVI, Westport (1983).

    Google Scholar 

  106. M. Karel and J.M. Flink, Some recent developments in food dehydration research, In: “Advances in Drying,” A.S. Mujumdar, ed., Vol. 2, Hemisphere, Washington (1983).

    Google Scholar 

  107. M. Scandola, G. Ceccorulli, and M. Pizzoli, Water clusters in elastin, Int. J. Biol. Macromol. 3:147 (1981).

    Article  CAS  Google Scholar 

  108. J.E. Jolley, The microstructure of photographic gelatin binders, Photogr. Sci. Eng. 14:169 (1970).

    CAS  Google Scholar 

  109. J.R. Mitchell, The rheology of gels, J. Text. Stud. 11:315 (1980).

    Article  CAS  Google Scholar 

  110. S.W. Shalaby, Thermoplastic polymers, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).

    Google Scholar 

  111. M. Richter, F. Schierbaum, S. Augustat, and K.D. Knoch, Method of producing starch hydrolysis products for use as food additives, U.S. patent 3,962,465 (1976).

    Google Scholar 

  112. M. Richter, F. Schierbaum, S. Augustat, and K.D. Knoch, Method of producing starch hydrolysis products for use as food additives, U.S. patent 3,986,890 (1976).

    Google Scholar 

  113. E.E. Braudo, E.M. Belavtseva, E.F. Titova, I.G. Plashchina, V.L. Krylov, V.B. Tolstoguzov, F.R. Schierbaum, and M. Richter, Struktur und eigenschaften von maltodextrin-hydrogelen, Starke 31:188 (1979).

    Article  CAS  Google Scholar 

  114. E.E. Braudo, I.G. Plashchina, and V.B. Tolstoguzov, Structural characterization of thermoreversible anionic polysaccharide gels by their elastoviscous properties, Carbohvdr. Polym, 4:23 (1984).

    Article  CAS  Google Scholar 

  115. P.V. Bulpin, A.N. Cutler, and I.C.M. Dea, Thermally-reversible gels from low DE maltodextrins, in: “Gums and Stabilizers for the Food Industry 2,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Pergamon Press, Oxford (1984).

    Google Scholar 

  116. F. Reuther, G. Damaschun, C. Gernat, F. Schierbaum, B. Kettlitz, S. Radosta, and A. Nothnagel, Molecular gelation mechanism of maltodextrins investigated by wide-angle X-ray scattering, Coll. Polym. Sci. 262:643 (1984).

    Article  CAS  Google Scholar 

  117. J.M. Lenchin, P.C. Trubiano, and S. Hoffman, Converted starches for use as a fat-or oil-replacement in foodstuffs, U.S. patent 4,510,166 (1985).

    Google Scholar 

  118. M.J. Miles, V.J. Morris, and S.G. Ring, Gelation of amylose, Carbohydr. Res. 135:257 (1985).

    Article  CAS  Google Scholar 

  119. H.S. Ellis and S.G. Ring, A study of some factors influencing amylose gelation, Carbohydr. Polvm. 5:201 (1985).

    Article  CAS  Google Scholar 

  120. M.L. German, A.L. Blumenfeld, V.P. Yuryev, and V.B. Tolstoguzov, An NMR study of structure formation in maltodextrin systems, Carbohydr. Polym. 11:139 (1989).

    Article  CAS  Google Scholar 

  121. E. Mayer, Hyperquenching of water and dilute aqueous solutions into their glassy states: an approach to cryofixation. Cryo-Lett. 9:66 (1988).

    CAS  Google Scholar 

  122. T.S. Ellis, X. Jin, and F.E. Karasz, The water-induced plasticization behavior of semi-crystalline polyamides. Polym. Prepr. 25(2):197 (1984).

    CAS  Google Scholar 

  123. X. Jin, T.S. Ellis, and F.E. Karasz, The effect of crystallinity and crosslinking on the depression of the glass transition temperature in nylon 6 by water, J. Polym. Sci.: Polvm. Phys. Edn. 22:1701 (1984).

    Article  CAS  Google Scholar 

  124. R.F. Boyer, E. Baer, and A. Hiltner, Concerning gelation effects in atactic polystyrene solutions, Macromolecules 18:427 (1985).

    Article  CAS  Google Scholar 

  125. H.E. Bair, Thermal analysis of additives in polymers, in: “Thermal Characterization of Polymeric Materials,” E.A. Turi, ed., Academic Press, Orlando (1981).

    Google Scholar 

  126. F. Franks, Solute-water interactions: do polyhydroxy compounds alter the properties of water?. Cryobiol. 20:335 (1983).

    Article  CAS  Google Scholar 

  127. F. Franks, Bound water: fact and fiction. Cryo-Lett. 4:73 (1983).

    Google Scholar 

  128. T.P. Labuza, Water binding of humectants, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  129. S. Wynne-Jones and J.M.V. Blanshard, Hydration studies of wheat starch, amylopectin, amylose gels and bread by proton magnetic resonance, Carbohydr. Polym. 6:289 (1986).

    Article  CAS  Google Scholar 

  130. D. French, Organization of starch granules, in: “Starch: Chemistry and Technology,” R.L. whistler, J.N. Bemiller, and E.F. Paschall, eds., 2nd edn., Academic Press, Orlando (1984).

    Google Scholar 

  131. A. Imberty and S. Perez, A revisit to the three-dimensional structure of B-type starch, Biopolymers 27:1205 (1988).

    Article  CAS  Google Scholar 

  132. H.W. Starkweather, Water in nylon, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  133. S. Gaeta, A. Apicella, and H.B. Hopfenberg, Kinetics and equilibria associated with the absorption and desorption of water and lithium chloride in an ethylene-vinyl alcohol copolymer, J. Membrane Sci. 12:195 (1982).

    Article  CAS  Google Scholar 

  134. N.S. Murthy, M. Stamm, J.P. Sibilia, and S. Krimm, Structural changes accompanying hydration in nylon 6, Macromolecules 22:1261 (1989).

    Article  CAS  Google Scholar 

  135. T. Kuge and S. Kitamura, Annealing of starch granules warm water treatment and heat-moisture treatment, J. Jap. Soc. Starch Sci. 32:65 (1985).

    Article  CAS  Google Scholar 

  136. R.J. Aguerre, C. Suarez, and P.E. Viollaz, Swelling and pore structure in starchy materials, J. Food Engn. 9:71 (1989).

    Article  Google Scholar 

  137. B.O. Juliano, Properties of rice starch in relation to varietal differences in processing characteristics of rice grain, J. Jap. Soc. Starch Sci. 29:305 (1982).

    Article  CAS  Google Scholar 

  138. J. Lelievre, Theory of gelatinization in a starch-water-solute system. Polymer 17:854 (1976).

    Article  CAS  Google Scholar 

  139. F. Franks, Nucleation: a maligned and misunderstood concept. Cryo-Lett. 8:53 (1987).

    Google Scholar 

  140. J. Kuprianoff, Fundamental aspects of the dehydration of foodstuffs, in: “Conference on Fundamental Aspects of the Dehydration of Foodstuffs,” Society of Chemical Industry, Aberdeen (1958).

    Google Scholar 

  141. J. Biros, R.L. Madan, and J. Pouchly, Heat capacity of water-swollen polymers above and below 0°C, Collect. Czech. Chem. Commun. 44:3566 (1979).

    Article  CAS  Google Scholar 

  142. J. Pouchly, J. Biros, and S. Benes, Heat capacities of water-swollen hydrophilic polymers above and below 0°C, Makromol. Chem. 180:745 (1979).

    Article  CAS  Google Scholar 

  143. J. Pouchly, S. Benes, Z. Masa, and J. Biros, Sorption of water in hydrophilic polymers, Makromol. Chem. 183:1565 (1982).

    Article  CAS  Google Scholar 

  144. J. Pouchly and J. Biros, Comments on the interpretation of thermodynamic data on swollen hydrogels, Polym. Bull. 19:513 (1988).

    Article  CAS  Google Scholar 

  145. W. Derbyshire, Dynamics of water in heterogeneous systems with emphasis on subzero temperatures, In: “Water: A Comprehensive Treatise,” F. Franks, ed., Vol. 7, Plenum Press, New York (1982).

    Google Scholar 

  146. C.A.J. Hoeve, The structure of water in polymers, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  147. H.G. Burghoff and W. Pusch, Thermodynamic state of water in cellulose acetate membranes, Polym. Engn. Sci. 20:305 (1980).

    Article  CAS  Google Scholar 

  148. S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, Dielectric relaxation time and structure of bound water in biological materials, J. Phvs. Chem. 91:6337 (1987).

    Article  CAS  Google Scholar 

  149. T.P. Labuza, Fiber’s water binding capacity, Cereal Foods World 34:566 (1989).

    Google Scholar 

  150. C.A. Angell, Perspective on the glass transition, J. Phys. Chem. Solids 49:863 (1988).

    Article  CAS  Google Scholar 

  151. G.E. Roberts and E.F.T. White, Relaxation processes in amorphous polymers, in: “The Physics of Glassy Polymers,” R.N. Haward, ed., Applied Science, London (1973).

    Google Scholar 

  152. G.P. Johari, A. Hallbrucker, and E. Mayer, Thermal behavior of several hyperquenched organic glasses, J. Phys. Chem. 93:2648 (1989).

    Article  CAS  Google Scholar 

  153. V.N. Morozov and S.G. Gevorkian, Low-temperature glass transition in proteins, Biopolymers 24:1785 (1985).

    Article  CAS  Google Scholar 

  154. R.K. Chan, K. Pathmanathan, and G.P. Johari, Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures, J. Phvs. Chem. 90:6358 (1986).

    Article  CAS  Google Scholar 

  155. S. Matsuoka, G. Williams, G.E. Johnson, E.W. Anderson, and T. Furukawa, Phenomenological relationship between dielectric relaxation and thermodynamic recovery processes near the glass transition, Macromolecules 18:2652 (1985).

    Article  CAS  Google Scholar 

  156. W. Borchard, W. Bremer, and A. Keese, State diagram of the water-gelatin system, Colloid Polym. Sci. 258:516 (1980).

    Article  CAS  Google Scholar 

  157. I. Tomka, J. Bohonek, A. Spuhler, and M. Ribeaud, Structure and formation of the gelatin gel, J. Photogr. Sci. 23:97 (1975).

    Google Scholar 

  158. I.V. Yannas, Collagen and gelatin in the solid state, J. Macromol. Sci. — Revs. Macromol. Chem. C7:49 (1972).

    Article  Google Scholar 

  159. J.A. Wesson, H. Takezoe, H. Yu, and S.P. Chen, Dye diffusion in swollen gels by forced Rayleigh scattering, J. Appl. Phys. 53:6513 (1982).

    Article  CAS  Google Scholar 

  160. R.E. Robertson, Segmental mobility in the equilibrium liquid below the glass transition, Macromolecules 18:953 (1985).

    Article  CAS  Google Scholar 

  161. S.Z.D. Cheng, Thermal characterization of macromolecules, J. Appl. Polym. Sci.: Appl. Polym. Symp. 43:315 (1989).

    CAS  Google Scholar 

  162. G.E. Johnson, H.E. Bair, S. Matsuoka, E.W. Anderson, and J.E. Scott, Water sorption and its effects on a polymer’s dielectric behavior, in: “Water in Polymers,” S.P. Rowland, ed., ACS Symp. Ser. 127, American Chemical Society, Washington, DC (1980).

    Google Scholar 

  163. F. Franks, Biophysics and biochemistry of low temperatures and freezing, in: “Effects of Low Temperatures on Biological Membranes,” G.J. Morris and A. Clarke, eds., Academic Press, London (1981).

    Google Scholar 

  164. U. Bengtzelius and A. Sjolander, Glass transitions in hard sphere and Lennard-Jones fluids, Conference on Dynamic Aspects of Structural Change in Liquids and Glasses, New York Acad. Sci., New York (1986).

    Google Scholar 

  165. C.R. Cantor and P.R. Schimmel, “Biophysical Chemistry: Part I The Conformation of Biological Macromolecules.” W.H. Freeman, San Francisco (1980).

    Google Scholar 

  166. K.E. Van Holde, “Physical Biochemistry,” Prentice-Hall, Englewood Cliffs, New Jersey (1971).

    Google Scholar 

  167. K. Hofer, A. Hallbrucker, E. Mayer, and G.P. Johari, Vitrified dilute aqueous solutions. 3. Plasticization of water’s H-bonded network and the glass transition temperature’s minimum, J. Phys. Chem. 93:4674 (1989).

    Article  CAS  Google Scholar 

  168. M.J. Pikal and S. Shah, The collapse temperature in freeze drying: dependence on measurement methodology and rate of water removal from the glassy phase, Int. J. Pharm. in press (1990).

    Google Scholar 

  169. C.A. Angell, Supercooled water, Ann. Rev. Phys. Chem. 34:593 (1983).

    Article  CAS  Google Scholar 

  170. M.D. Baro, N. Clavaguera, S. Bordas, M.T. Clavaguera-Mora, and J. Casa-Vazquez, Evaluation of crystallization kinetics by DTA, J. Thermal Anal. 11:271 (1977).

    Article  CAS  Google Scholar 

  171. A.J. Phillips, R.J. Yarwood, and J.H. Collett, Thermal analysis of freeze-dried products, Anal. Proceed. 23:394 (1986).

    CAS  Google Scholar 

  172. A. Hiltner and E. Baer, Reversible gelation of macromolecular systems, Polym. Prepr. 27(1):207 (1986).

    CAS  Google Scholar 

  173. R.C. Domszy, R. Alamo, C.O. Edwards, and L. Mandelkern, Thermoreversible gelation and crystallization of homopolymers and copolymers, Macromolecules 19:310 (1986).

    Article  CAS  Google Scholar 

  174. L. Mandelkern, Thermoreversible gelation and crystallization from solution, Polvm. Prepr. 27(1): 206 (1986).

    CAS  Google Scholar 

  175. W. Burchard, Entanglement and reversible gelation for polymers of different architectures. Progr. Colloid Polym. Sci. 78:63 (1988).

    Article  CAS  Google Scholar 

  176. F.D. Blum and B. Nagara, Solvent mobility in gels of atactic polystyrene, Polym. Prepr. 27(1):211 (1986).

    CAS  Google Scholar 

  177. M.J. Tait, A. Suggett, F. Franks, S. Ablett, and P.A. Quiekenden, Hydration of monosaccharides: study by dielectric and NMR, J. Solution Chem. 1:131 (1972).

    Article  CAS  Google Scholar 

  178. F. Franks, D.S. Reid, and A. Suggett, Conformation and hydration of sugars and related compounds in dilute aqueous solution. J. Solution Chem. 2:99 (1973).

    Article  CAS  Google Scholar 

  179. A. Suggett and A.H. Clark, Molecular motion and interactions in aqueous carbohydrate solutions. I. dielectric relaxation studies, J. Solution Chem. 5:1 (1976).

    Article  CAS  Google Scholar 

  180. A. Suggett, S. Ablett, and P.J. Lillford, Molecular motion and interactions in aqueous carbohydrate solutions. II. NMR studies, J. Solution Chem. 5:17 (1976).

    Article  CAS  Google Scholar 

  181. A. Suggett, Molecular motion and interactions in aqueous carbohydrate solutions. III. a combined NMR and dielectric relaxation strategy. J. Solution Chem. 5:33 (1976).

    Article  CAS  Google Scholar 

  182. S.E. Keinath and R.F. Boyer, Thermomechanical analysis of Tg and T > Tg transitions in polystyrene, J. Appl. Polym. Sci. 26:2077 (1981).

    Article  CAS  Google Scholar 

  183. A.S. Marshall and S.E.B. Petrie, Thermal transitions in gelatin and aqueous gelatin solutions, J. Photogr. Sci. 28:128 (1980).

    CAS  Google Scholar 

  184. W.A. Atwell, L.F. Hood, D.R. Lineback, E. Varriano-Marston, and H.F. Zobel, Terminology and methodology associated with basic starch phenomena, Cereal Foods World 33:306 (1988).

    Google Scholar 

  185. A.H. Bloksma, Rheological aspects of structural changes during baking, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).

    Google Scholar 

  186. A.H. Bloksma and W. Bushuk, Rheology and chemistry of dough, in: “Wheat Science and Technology,” 3rd edn., Y. Pomeranz, ed., Vol. II, American Association of Cereal Chemists, St. Paul, Minn. (1988).

    Google Scholar 

  187. R.C. Hoseney, Component interaction during heating and storage of baked products, in: “Chemistry and Physics of Baking,” J.M.V. Blanshard, P.J. Frazier, and T. Galliard, eds., Royal Society of Chemistry, London (1986).

    Google Scholar 

  188. S.G. Ring, Observations on crystallization of amylopectin from aqueous solution, Int. J. Biol. Macromol. 7:253 (1985).

    Article  CAS  Google Scholar 

  189. S.G. Ring, Studies on starch gelation, Starke 37:80 (1985).

    Article  CAS  Google Scholar 

  190. S.G. Ring and P.D. Orford, Recent observations on retrogradation of amylopectin, in: “Gums and Stabilizers for the Food Industry 3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier Applied Science, London (1986).

    Google Scholar 

  191. P.L. Russell, Aging of gels from starches of different amylose/amylopectin content studied by DSC, J. Cereal Sci. 6:147 (1987).

    Article  CAS  Google Scholar 

  192. K.J. l’Anson, M.J. Miles, V.J. Morris, S.G. Ring, and C. Nave, Study of amylose gelation using synchrotron X-Ray source, Carbohydr. Polym. 8:45 (1988).

    Article  Google Scholar 

  193. C. Mestres, P. Colonna, and A. Buleon, Gelation and crystallization of maize starch after pasting, drum-drying, or extrusion cooking, J. Cereal Sci. 7:123 (1988).

    Article  Google Scholar 

  194. M.J. Gidley and P.V. Bulpin, Aggregation of amylose in aqueous systems: the effect of chain length on phase behavior and aggregation kinetics, Macromolecules 22:341 (1989).

    Article  CAS  Google Scholar 

  195. A.H. Clark, M.J. Gidley, R.K. Richardson, and S.B. Ross-Murphy, Rheological studies of aqueous amylose gels: the effect of chain length and concentration on gel modulus, Macromolecules 22:346 (1989).

    Article  CAS  Google Scholar 

  196. M.J. Gidley, Molecular mechanisms underlying amylose aggregation and gelation, Macromolecules 22:351 (1989).

    Article  CAS  Google Scholar 

  197. M.J. Miles, V.J. Morris, P.D. Orford, and S.G. Ring, Roles of amylose and amylopectin in gelation and retrogradation of starch, Carbohydr. Res. 135:271 (1985).

    Article  CAS  Google Scholar 

  198. D.S. Reid and S. Charoenrein, DSC studies of starch-water interaction in gelatinization process, in: “Proceedings 14th NATAS Conference,” NATAS, San Francisco (1985).

    Google Scholar 

  199. A. Chungcharoen and D.B. Lund, Influence of solutes and water on rice starch gelatinization, Cereal Chem. 64:240 (1987).

    CAS  Google Scholar 

  200. B.C. Burros, L.A. Young, and P.A. Carroad, Kinetics of corn meal gelatinization at high temperature and low moisture, J. Food Sci. 52:1372 (1987).

    Article  Google Scholar 

  201. D. Paton, DSC of oat starch pastes. Cereal Chem. 64:394 (1987).

    CAS  Google Scholar 

  202. J.W. Donovan, Phase transitions of the starch-water system, Biopolymers 18:263 (1979).

    Article  CAS  Google Scholar 

  203. C.G. Biliaderis, T.J. Maurice, and J.R. Vose, Starch gelatinization phenomena studied by DSC, J. Food Sci. 45:1669 (1980).

    Article  Google Scholar 

  204. S.Z.D. Cheng and B. Wunderlich, Glass transition and melting behavior of poly(oxy-2,6-dimethyl-l,4-phenylene), Macromolecules 20:1630 (1987).

    Article  CAS  Google Scholar 

  205. J.M.V. Blanshard, Physicochemical aspects of starch gelatinization, in: “Polysaccharides in Food,” J.M.V. Blanshard and J.R. Mitchell, eds., Butterworths, London (1979).

    Google Scholar 

  206. D.B. Lund, Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization, CRC Crit. Rev. Food Sci. Nutr. 20:249 (1984).

    Article  CAS  Google Scholar 

  207. G.C. Alfonso and T.P. Russell, Kinetics of crystallization in semi-crystalline/amorphous polymer mixtures, Macromolecules 19:1143 (1986).

    Article  CAS  Google Scholar 

  208. T. Jankowski and C.K. Rha, Retrogradation of starch in cooked wheat, Starke 38:6 (1986).

    Article  CAS  Google Scholar 

  209. K. Kulp and J.G. Ponte, Staling of white pan bread: fundamental causes, CRC Crit. Revs. Food Sci. Nutr. 15:1 (1981).

    Article  CAS  Google Scholar 

  210. P.J. Flory and E.S. Weaver, Phase transitions in collagen and gelatin systems, J. Amer. Chem. Soc. 82:4518 (1960).

    Article  CAS  Google Scholar 

  211. F. Nakazawa, S. Noguchi, J. Takahashi, and M. Takada, Retrogradation of gelatinized potato starch studied by DSC, Agric. Biol. Chem. 49:953 (1985).

    Article  CAS  Google Scholar 

  212. M.J. Gidley, Factors affecting crystalline type of native starches and model materials, Carbohvdr. Res. 161:301 (1987).

    Article  CAS  Google Scholar 

  213. M.J. Gidley and P.V. Bulpin, Crystallization of maltaoses as models of the crystalline forms of starch, Carbohvdr. Res. 161:291 (1987).

    Article  CAS  Google Scholar 

  214. A. Guilbot and B. Godon, Le pain rassis, Cah. Nut. Diet. 19:171 (1984).

    CAS  Google Scholar 

  215. J.D. Ferry, Mechanical properties of substances of high molecular weight, J. Amer. Chem. Soc. 70:2244 (1948).

    Article  CAS  Google Scholar 

  216. W.M. Nicol, Sucrose and food technology, in: “Sugar: Science and Technology,” G.G. Birch and K.J. Parker, eds., Applied Science, London (1979).

    Google Scholar 

  217. T.G. Cooper, “The Tools of Biochemistry,” Wiley-Interscience, New York (1977).

    Google Scholar 

  218. K.J. Parker, The role of sucrose syrups in food manufacture, in: “Glucose Syrups and Related Carbohydrates,” G.G. Birch, L.F. Green, and C.B. Coulson, eds., Elsevier, Amsterdam (1970).

    Google Scholar 

  219. H. Weisser, Influence of temperature on sorption equilibria, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  220. F. Franks, Physical chemistry of small carbohydrates equilibrium solution properties. Pure Appl. Chem. 59:1189 (1987).

    Article  CAS  Google Scholar 

  221. U. Matsukura, A. Matsunaga, and K. Kainuma, Contribution of amylose to starch retrogradation, J. Jpn. Soc. Starch Sci. 30:106 (1983).

    Article  CAS  Google Scholar 

  222. E.J. Welsh, J. Bailey, R. Chandarana, and W.E. Norris, Physical characterization of interchain association in starch systems, Prog. Fd. Nutr. Sci. 6:45 (1982).

    CAS  Google Scholar 

  223. P.A.M. Steeneken, Rheological properties of aqueous suspensions of swollen starch granules, Carbohvdr. Polym. 11:23 (1989).

    Article  CAS  Google Scholar 

  224. M.J. Gidley, P.V. Bulpin, and S. Kay, Effect of chain length on amylose retrogradation, In: “Gums and Stabilizers for the Food Industry 3,” G.O. Phillips, D.J. Wedlock, and P.A. Williams, eds., Elsevier Applied Science, London (1986).

    Google Scholar 

  225. R.L. Whistler and J.R. Daniel, Molecular structure of starch, in: “Starch: Chemistry and Technology,” 2nd edn., R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds., Academic Press, Orlando (1984).

    Google Scholar 

  226. A. Buleon, F. Duprat, F.P. Booy, and H. Chanzy, Single crystals of amylose with a low degree of polymerization, Carbohydr. Polym. 4:161 (1984).

    Article  CAS  Google Scholar 

  227. S. Hizukuri, Polymodal distribution of chain lengths of amylopectins and its significance. Carbohydr. Res. 147:342 (1986).

    Article  CAS  Google Scholar 

  228. H. Krusi and H. Neukom, Untersuchungen uber die retrogradation der starke in konzentrierten weizenstarkegelen, Starke 36:300 (1984).

    Article  Google Scholar 

  229. C.J. Durning and M. Tabor, Mutual diffusion in concentrated polymer solutions under small driving force, Macromolecules 19:2220 (1986).

    Article  CAS  Google Scholar 

  230. A.H. Muhr and J.M.V. Blanshard, Effect of polysaccharide stabilizers on the rate of growth of ice, J. Food Technol. 21:683 (1986).

    CAS  Google Scholar 

  231. H. Bizot, A. Buleon, N. Mouhoud-Riou, and J.L. Multon, Water vapor sorption hysteresis on potato starch, in: “Properties of Water in Foods,” D. Simatos and J.L. Multon, eds., Martinus Nijhoff, Dordrecht (1985).

    Google Scholar 

  232. F. Franks, Freeze drying: from empiricism to predictability. Cryo-Lett. 11:93 (1990).

    Google Scholar 

  233. P.L. Russell and G. Oliver, The effect of pH and NaCl content on starch gel aging. A study by DSC and rheology, J. Cereal Sci. 10:123 (1989).

    Article  CAS  Google Scholar 

  234. M. Karel, Role of water activity, in: “Food Properties and Computer-Aided Engineering of Food Processing Systems,” R.P. Singh and A.G. Medina, eds., Kluwer, Dordrecht (1989).

    Google Scholar 

  235. D.B. Lund, Starch gelatinization, in: “Food Properties and Computer-Aided Engineering of Food Processing Systems,” R.P. Singh and A.G. Medina, eds., Kluwer, Dordrecht (1989).

    Google Scholar 

  236. S. Radosta, F. Schierbaum, F. Reuther, and H. Anger, Polymer-water interaction of maltodextrins. Part I: water vapor sorption and desorption of maltodextrin powders, Starke 41:395 (1989).

    Article  CAS  Google Scholar 

  237. J.L. Doublier and L. Choplin, A rheological description of amylose gelation, Carbohydr. Res. 193:215 (1989).

    Article  CAS  Google Scholar 

  238. Y. Roos and M. Karel, Plasticizing effect of water on thermal behavior and crystallization of amorphous food models, J. Food Sci., in press (1990).

    Google Scholar 

  239. Y. Roos, Effect of moisture on the thermal behavior of strawberries studied using DSC. J. Food Sci. 52:146 (1987).

    Article  Google Scholar 

  240. K. Paakkonen and Y.H. Roos, Effects of drying conditions on water sorption and phase transitions of freeze-dried horseradish roots, J. Food Sci. 55:206 (1990).

    Article  Google Scholar 

  241. F. Franks and J.R. Grigera, Solution properties of low molecular weight polyhydroxy compounds, In: “Water Science Reviews-5: The Molecules of Life,” F. Franks, ed., Cambridge University Press, Cambridge (1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slade, L., Levine, H. (1991). A Food Polymer Science Approach to Structure-Property Relationships in Aqueous Food Systems: Non-Equilibrium Behavior of Carbohydrate-Water Systems. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics