Skip to main content
Log in

Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient l-Aspartic Acid Producing Escherichia coli

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce l-aspartic acid. The phage had a head diameter of 45–50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-l-alanine amidase family, respectively. The genome showed the sequence identity of 82.7 % with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its l-aspartase activity was 84.4 % of that of CICC 11022S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azevedo, R. A., Lancien, M., & Lea, P. J. (2006). The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 30(2), 143–162.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al. (2008). The RAST server: Rapid annotations using subsystem technology. BMC Genomics, 9, 75.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhardwaj, A., Olia, A. S., & Cingolani, G. (2014). Architecture of viral genome-delivery molecular machines. Current Opinion in Structural Biology, 25, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Birge, E. A. (2000). Bacterial and bacteriophage genetics (4th ed.). New York: Springer.

    Book  Google Scholar 

  • Carver, T., Rutherford, K. M., Berriman, M., Rajandream, M., Barrell, B. G., & Parkhill, J. (2005). ACT: The artemis comparison tool. Bioinfomatics, 21(16), 3422–3423.

    Article  CAS  Google Scholar 

  • Chen, H. J., Ko, T. P., Lee, C. Y., Wang, N. C., & Wang, A. H. (2009). Structure, assembly, and mechanism of a PLP-dependent dodecameric l-aspartate beta-decarboxylase. Structure, 17(4), 517–529.

    Article  CAS  PubMed  Google Scholar 

  • Chopin, M. C., Chopin, A., & Roux, C. (1976). Definitions of bacteriophage groups according to their lytic action on mesophilic lactic streptococci. Applied and Environmental Microbiology, 32(6), 741–746.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guglielmotti, D. M., Binetti, A. G., Reinheimer, J. A., & Quiberoni, A. (2009). Streptococcus thermophilus phage monitoring in a cheese factory: Phage characteristics and starter sensitivity. International Dairy Journal, 19(8), 476–480.

    Article  CAS  Google Scholar 

  • Huang, Y., Fan, H., Pei, G., Fan, H., Zhang, Z., An, X., et al. (2012). Complete genome sequence of IME15, the first T7-like bacteriophage lytic to pan-antibiotic-resistant Stenotrophomonas maltophilia. Journal of Virology, 86(24), 13839–13840.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber, H. E., Beauchamp, B. B., & Richardson, C. C. (1988). Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. The Journal of Biological Chemistry, 263(27), 13549–13556.

    CAS  PubMed  Google Scholar 

  • Huffer, S., Roche, C. M., Harvey, W., Blanch, H. W., & Clark, D. S. (2012). Escherichia coli for biofuel production: Bridging the gap from promise to practice. Trends in Biotechnology, 30(10), 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, P., & Abedon, S. T. (2009). Practical methods for determining phage growth parameters. Methods in Molecular Biology, 501, 175–202.

    Article  CAS  PubMed  Google Scholar 

  • Jia, S., Kang, Y. P., Park, J. H., Lee, J., & Kwon, S. W. (2011). Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Chromatography A, 1218(51), 9174–9182.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. T., Shirley, M., Wu, X., & Keis, S. (2000). Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. Journal of Molecular Microbiology and Biotechnology, 2(1), 21–26.

    CAS  PubMed  Google Scholar 

  • Kawabata, N., Hatanaka, H., & Odaka, H. (1995). Continuous production of l-aspartic acid from ammonium fumarate using immobilized cells by capture on the surface of nonwoven cloth coated with a pyridinium-type polymer. Journal of Fermentation and Bioengineering, 79(4), 317–322.

    Article  CAS  Google Scholar 

  • Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., & Johnson, R. P. (2009). Enumeration of bacteriophages by double agar overlay plaque assay. Methods in Molecular Biology, 501, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D., Redfern, O., & Orengo, C. (2007). Predicting protein function from sequence and structure. Nature Reviews Molecular Cell Biology, 8(12), 995–1005.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., & Richardson, C. C. (1993). Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proceedings of the National Academy of Science of the United States of America, 90(5), 1761–1765.

    Article  CAS  Google Scholar 

  • Liu, P., Zhang, H., Lv, M., Hu, M., Li, Z., Gao, C., et al. (2014). Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Scientific Reports, 4, 5657.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loessner, M. J. (2005). Bacteriophage endolysins–current state of research and applications. Current Opinion in Microbiology, 8(4), 480–487.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Breidt, F., Fleming, H., Altermann, E., & Klaenhammer, T. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84(2), 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Meissner-Roloff, R. J., Newton-Foot, M., & van Pittius, N. C. G. (2013). A metabolomics approach exploring the function of the ESX-3 type VII secretion system of M. smegmatis. Metabolomics, 9(3), 631–641.

    Article  Google Scholar 

  • Mendelman, L. V., Notarnicola, S. M., & Richardson, C. C. (1992). Roles of bacteriophage T7 gene 4 proteins in providing primase and helicase functions in vivo. Proceedings of the National Academy of Science of the United States of America, 89(22), 10638–10642.

    Article  CAS  Google Scholar 

  • Mercanti, D. J., Guglielmotti, D. M., Patrignani, F., Reinheimer, J. A., & Quiberoni, A. (2012). Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application. Food Microbiology, 29(1), 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Pajunen, M. I., Kiljunen, S. J., Söderholm, M. L., & Skurnik, M. (2001). Complete genomic sequence of the lytic bacteriophage φYeO3-12 of Yersinia enterocolitica serotype O: 3. Journal of Bacteriology, 183(6), 1928–1937.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pang, T., Savva, C. G., Fleming, K. G., Struck, D. K., & Young, R. (2009). Structure of the lethal phage pinhole. Proceedings of the National Academy of Science of the United States of America, 106(45), 18966–18971.

    Article  CAS  Google Scholar 

  • Rost, B. (2002). Enzyme function less conserved than anticipated. Journal of Molecular Biology, 318(2), 595–608.

    Article  CAS  PubMed  Google Scholar 

  • Roweton, S., Huang, S. J., & Swift, G. (1997). Poly(aspartic acid): Synthesis, biodegradation, and current applications. Journal of Environmental Polymer Degradation, 5(3), 175–181.

    CAS  Google Scholar 

  • Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A., & Barrell, B. (2000). Artemis: Sequence visualization and annotation. Bioinformatics, 16(10), 944–945.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed., Vol. 2). Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Samson, J. E., & Moineau, S. (2013). Bacteriophages in food fermentations: New frontiers in a continuous arms race. Annual review of food science and technology, 4, 347–368.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409(6817), 258–268.

    Article  CAS  PubMed  Google Scholar 

  • Selli, A., Crociani, F., Matteuzzi, D., & Crisetig, G. (1986). Feedback inhibition of homoserine dehydrogenase and threonine deaminase in the genusBifidobacterium. Current Microbiology, 13(1), 33–38.

    Article  CAS  Google Scholar 

  • Shi, Y., Yan, Y., Ji, W., Du, B., Meng, X., Wang, H., & Sun, J. (2012). Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virology Journal, 9, 70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stawikowski, M., & Fields, G. B. (2012). Introduction to peptide synthesis. Current Protocols in Protein Science,. doi:10.1002/0471140864.ps1801s69.

    PubMed  Google Scholar 

  • Sun, W. J., Liu, C. F., Yu, L., Cui, F. J., Zhou, Q., Yu, S. L., & Sun, L. (2012). A novel bacteriophage KSL-1 of 2-Keto-gluconic acid producer Pseudomonas fluorescens K1005 isolation, characterization and its remedial action. BMC Microbiology, 12, 127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szymańska, G., Sobierajski, B., & Chmiel, A. (2011). Immobilized cells of recombinant Escherichia coli strain for continuous production of l-aspartic acid. Polish Journal of Microbiology, 60(2), 105–112.

    PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian, W., & Skolnick, J. (2003). How well is enzyme function conserved as a function of pairwise sequence identity? Journal of Molecular Biology, 333(4), 863–882.

    Article  CAS  PubMed  Google Scholar 

  • Wünsche, L. (1989). Importance of bacteriophages in fermentation processes. Acta Biotechnologica, 9(5), 395–419.

    Article  Google Scholar 

  • Wurgler, S. M., & Richardson, C. C. (1990). Structure and regulation of the gene for dGTP triphosphohydrolase from Escherichia coli. Proceedings of the National Academy of Science of the United States of America, 87(7), 2740–2744.

    Article  CAS  Google Scholar 

  • Xu, Y., Liu, Y., Liu, Y., Pei, J., Yao, S., & Cheng, C. (2015). Bacteriophage therapy against Enterobacteriaceae. Virologica Sinica, 30(1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Struck, D. K., Deaton, J., Wang, I. N., & Young, R. (2004). A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proceedings of the National Academy of Science of the United States of America, 101(17), 6415–6420.

    Article  CAS  Google Scholar 

  • Young, R., & Bläsi, U. (1995). Holins: Form and function in bacteriophage lysis. FEMS Microbiology Reviews, 17(1–2), 191–205.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, F., Ou, J., Huang, Y., Li, Q., Xu, G., Liu, Z., & Yang, S. (2015). Determination of 21 free amino acids in fruit juices by HPLC using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method. Food Analytical Methods, 8(2), 428–437.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jingnan Liang for TEM performed at the Core Facility Center of Institute of Microbiology, Chinese Academy of Science, Beijing, China. This work was supported by the Scientific and Technological Development Project of China National Research Institute of Food and Fermentation Industries (2015KJFZ-BS-03), and Yantaishi Technology Development Project (2014SF151).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youqiang Xu or Chi Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, Y., Yao, S. et al. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient l-Aspartic Acid Producing Escherichia coli . Food Environ Virol 8, 18–26 (2016). https://doi.org/10.1007/s12560-015-9218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-015-9218-0

Keywords

Navigation