Skip to main content

Advertisement

Log in

Kinetics of Tissue Iron in Experimental Autoimmune Encephalomyelitis in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To elucidate the role of iron in the pathomechanisms of autoimmune CNS disorders, we estimated the tissue concentrations of Fe2+ in the brain, spinal cord, and liver in the chronic relapsing form of experimental autoimmune encephalomyelitis (EAE). The disease was induced in Dark Agouti (DA) strain of rats, by subcutaneous injection of bovine brain homogenate in complete Freund's adjuvant (CFA). Control rats consisted of unsensitized rats and of rats treated with CFA or saline. The data obtained by clinical assessment and by inductively coupled plasma spectrometry have shown that the attacks of disease (on the 12th and 22nd post-immunization day) were followed by high accumulation of iron in the liver. Additionally, during the second attack of disease, the decreased concentration of Fe2+ was found in cervical spinal cord. The data point to regulatory effects of iron and hepatic trace elements regulating mechanisms in the pathogenesis of EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  PubMed  CAS  Google Scholar 

  2. Levine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann NY Acad Sci 1012:252–266

    Article  PubMed  CAS  Google Scholar 

  3. Moos T (2002) Brain iron homeostasis. Dan Med Bull 49:279–301

    PubMed  CAS  Google Scholar 

  4. Connor JR, Menzies SL, Burdo JR et al (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25:118–129

    Article  PubMed  CAS  Google Scholar 

  5. Todorich B, Pasquini JM, Garcia CI et al (2009) Oligodendrocytes and myelination: the role of iron. Glia 57:467–478

    Article  PubMed  Google Scholar 

  6. Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157

    Article  PubMed  Google Scholar 

  7. Simmons DA, Casale M, Alcon B et al (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55:1074–1084

    Article  PubMed  Google Scholar 

  8. Barnham KJ, Bush AI (2008) Metals in Alzheimer's and Parkinson's diseases. Curr Opin Chem Biol 12:222–228

    Article  PubMed  CAS  Google Scholar 

  9. Brewer GJ (2010) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 123:319–326

    Article  Google Scholar 

  10. Stankiewicz J, Panter SS, Neema M et al (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 4:371–386

    Article  PubMed  CAS  Google Scholar 

  11. Connor JR, Pavlick G, Karli D et al (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123

    Article  PubMed  CAS  Google Scholar 

  12. LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res 760:298–303

    Article  PubMed  CAS  Google Scholar 

  13. Smith KJ, Kapoor R, Felts PA (1999) Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 9:69–92

    Article  PubMed  CAS  Google Scholar 

  14. Forge JK, Pedchenko TV, LeVine SM (1998) Iron deposits in the central nervous system of SJL mice with experimental allergic encephalomyelitis. Life Sci 63:2271–2284

    Article  PubMed  CAS  Google Scholar 

  15. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  16. Pedersen MO, Jensen R, Pedersen DS et al (2009) Metallothionein-I + II in neuroprotection. Biofactors 35:315–325

    Article  PubMed  CAS  Google Scholar 

  17. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  PubMed  CAS  Google Scholar 

  18. Grant SM, Wiesinger JA, Beard JL et al (2003) Iron-deficient mice fail to develop autoimmune encephalomyelitis. J Nutr 133:2635–2638

    PubMed  CAS  Google Scholar 

  19. Haacke EM, Makki M, Ge Y et al (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 29:537–544

    Article  PubMed  Google Scholar 

  20. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  PubMed  CAS  Google Scholar 

  21. Jakovac H, Grebić D, Tota M et al (2010) Time-course expression of metallothioneins and tissue metals in chronic relapsing form of experimental autoimmune encephalomyelitis. Histol Histopathol (in press)

  22. Vukmanovic S, Mostarica Stojkovic M, Lukic ML (1989) Experimental autoimmune encephalomyelitis in “low” and “high” interleukin 2 producer rats. I. Cellular basis of induction. Cell Immunol 121:237–246

    Article  PubMed  CAS  Google Scholar 

  23. Muhvic D, Radosevic-Stasic B, Pugel E et al (1992) Modulation of experimental allergic encephalomyelitis by somatostatin. Ann NY Acad Sci 650:170–178

    Article  PubMed  CAS  Google Scholar 

  24. Jakovac H, Grebic D, Mrakovcic-Sutic I et al (2006) Metallothionein expression and tissue metal kinetics after partial hepatectomy in mice. Biol Trace Elem Res 114:249–268

    Article  PubMed  CAS  Google Scholar 

  25. Mannie M, Swanborg RH, Stepaniak JA (2009) Experimental autoimmune encephalomyelitis in the rat. Curr Protoc Immunol Chapter 15:Unit 15 2

  26. Lehmann HC, Meyer zu Horste G, Kieseier BC et al (2009) Review: pathogenesis and treatment of immune-mediated neuropathies. Ther Adv Neurol Disord 2:261–281

    Article  PubMed  Google Scholar 

  27. Bhat R, Axtell R, Mitra A et al (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 107:2580–2585

    Article  PubMed  CAS  Google Scholar 

  28. Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64:123–132

    Article  PubMed  CAS  Google Scholar 

  29. Platten M, Youssef S, Hur EM et al (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci USA 106:14948–14953

    Article  PubMed  CAS  Google Scholar 

  30. Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543

    Article  PubMed  CAS  Google Scholar 

  31. West AK, Chuah MI, Vickers JC et al (2004) Protective role of metallothioneins in the injured mammalian brain. Rev Neurosci 15:157–166

    Article  PubMed  CAS  Google Scholar 

  32. Schonberg DL, McTigue DM (2009) Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation. Exp Neurol 218:64–74

    Article  PubMed  CAS  Google Scholar 

  33. Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Investig 32(Suppl 1):70–78

    Article  CAS  Google Scholar 

  34. Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2

    Article  PubMed  Google Scholar 

  35. Linker RA, Kroner A, Horn T et al (2006) Iron particle-enhanced visualization of inflammatory central nervous system lesions by high resolution: preliminary data in an animal model. AJNR Am J Neuroradiol 27:1225–1229

    PubMed  CAS  Google Scholar 

  36. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  37. Koj A (1996) Initiation of acute phase response and synthesis of cytokines. Biochim Biophys Acta (BBA)—Mol Basis Dis 1317:84–94

    Google Scholar 

  38. Vyoral D, Hepcidin PJ (2005) A direct link between iron metabolism and immunity. Int J Biochem Cell Biol 37:1768–1773

    Article  PubMed  CAS  Google Scholar 

  39. Loreal O, Haziza-Pigeon C, Troadec MB et al (2005) Hepcidin in iron metabolism. Curr Protein Pept Sci 6:279–291

    Article  PubMed  CAS  Google Scholar 

  40. Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18:171–182

    Article  PubMed  CAS  Google Scholar 

  41. Moffatt P, Denizeau F (1997) Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29:261–307

    Article  PubMed  CAS  Google Scholar 

  42. Coyle P, Philcox JC, Carey LC et al (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  PubMed  CAS  Google Scholar 

  43. Kozlowski H, Janicka-Klos A, Brasun J et al (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685

    Article  CAS  Google Scholar 

  44. Verga Falzacappa MV, Vujic Spasic M, Kessler R et al (2007) STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–358

    Article  PubMed  Google Scholar 

  45. Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28:197–213

    Article  PubMed  CAS  Google Scholar 

  46. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26:323–342

    Article  PubMed  CAS  Google Scholar 

  47. Balesaria S, Ramesh B, McArdle H et al (2009) Divalent metal-dependent regulation of hepcidin expression by MTF-1. FEBS Lett 584:719–725

    Article  PubMed  Google Scholar 

  48. Nemeth E, Valore EV, Territo M et al (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101:2461–2463

    Article  PubMed  CAS  Google Scholar 

  49. Latunde-Dada GO (2009) Iron metabolism: microbes, mouse, and man. Bioessays 31:1309–1317

    Article  PubMed  CAS  Google Scholar 

  50. Penkowa M, Caceres M, Borup R et al (2006) Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice. J Neurosci Res 84:1452–1474

    Article  PubMed  CAS  Google Scholar 

  51. West AK, Hidalgo J, Eddins D et al (2008) Metallothionein in the central nervous system: roles in protection, regeneration and cognition. NeuroToxicol 29:489–503

    Article  CAS  Google Scholar 

  52. Mocchegiani E, Giacconi R, Muzzioli M et al (2002) Altered zinc binding by metallothioneins in immune-neuroendocrine senescence: a vicious circle between metallothioneins and chaperones? Adv Cell Aging Gerontol 13:261–281

    Article  Google Scholar 

  53. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A et al (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996

    PubMed  CAS  Google Scholar 

  54. Mocchegiani E, Giacconi R, Cipriano C et al (2009) NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 29:416–425

    Article  PubMed  CAS  Google Scholar 

  55. Mocchegiani E, Giacconi R, Muti E et al (2004) Zinc, immune plasticity, aging, and successful aging: role of metallothionein. Ann NY Acad Sci 1019:127–134

    Article  PubMed  CAS  Google Scholar 

  56. Rink L, Haase H (2007) Zinc homeostasis and immunity. Trends Immunol 28:1–4

    Article  PubMed  CAS  Google Scholar 

  57. Prasad A (2007) Zinc: mechanisms of host defense. J Nutr 137:1345–1349

    PubMed  CAS  Google Scholar 

  58. Sawa Y, Arima Y, Ogura H et al (2009) Hepatic interleukin-7 expression regulates T cell responses. Immunity 30:447–457

    Article  PubMed  CAS  Google Scholar 

  59. Abo T, Kawamura T, Watanabe H (2000) Physiological responses of extrathymic T cells in the liver. Immunol Rev 174:135–149

    Article  PubMed  CAS  Google Scholar 

  60. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Croatian Ministry of Science (Projects Nos 62-0621341-1337 and 62-0621341-0061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biserka Radošević-Stašić.

Additional information

Supported by grants 0621341-0061 and 0621341-1337 from Croatian Ministry of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tota, M., Jakovac, H., Grebić, D. et al. Kinetics of Tissue Iron in Experimental Autoimmune Encephalomyelitis in Rats. Biol Trace Elem Res 143, 332–343 (2011). https://doi.org/10.1007/s12011-010-8841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8841-8

Keywords

Navigation