Skip to main content

Advertisement

Log in

Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The central nervous system (CNS) is traditionally viewed as an immune privileged site in which overzealous immune cells are prevented from doing irreparable damage. It was believed that immune responses occurring within the CNS could potentially do more damage than the initial pathogenic insult itself. However, virtually every aspect of CNS tissue damage, including degeneration, tumors, infection, and of course autoimmunity, involves a significant cellular inflammatory component. While the blood–brain barrier (BBB) inhibits diffusion of hydrophilic (immune) molecules across brain capillaries, activated lymphocytes readily pass the endothelial layer of postcapillary venules without difficulty. In classic neuro-immune diseases such as multiple sclerosis or acute disseminated encephalomyelitis, it is thought that neuroantigen-reactive lymphocytes, which have escaped immune tolerance, now invade the CNS and are responsible for tissue damage, demyelination, and axonal degeneration. The developed animal model for these disorders, experimental autoimmune encephalomyelitis (EAE), reflects many aspects of the human conditions. Studies in EAE proved that auto-reactive encephalitogenic T helper (Th) cells are responsible for the onset of the disease. Th cells recognize their cognate antigen (Ag) only when presented by professional Ag-presenting cells in the context of major histocompatibility complex class II molecules. The apparent target structures of EAE immunity are myelinating oligodendrocytes, which are not capable of presenting Ag to invading encephalitogenic T cells. A compulsory third party is thus required to mediate between the attacking T cells and the myelin-expressing target. This review will discuss the recent advances in this field of research and we will discuss the journey of an auto-reactive T cell from its site of activation into perivascular spaces and further into the target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Medawar PB (1948) Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–74

    PubMed  CAS  Google Scholar 

  2. Billingham RE, Boswell T (1953) Studies on the problem of corneal homografts. Proc R Soc Lond B Biol Sci 141:392–406

    Article  PubMed  CAS  Google Scholar 

  3. Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    Article  PubMed  CAS  Google Scholar 

  4. Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124

    PubMed  CAS  Google Scholar 

  5. Bechmann I (2005) Failed central nervous system regeneration: a downside of immune privilege? Neuromolecular Med 7:217–228

    PubMed  CAS  Google Scholar 

  6. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    PubMed  CAS  Google Scholar 

  7. Carson MJ, Sutcliffe JG, Campbell IL (1999) Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res 55:127–134

    PubMed  CAS  Google Scholar 

  8. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin M-F, Nataf S (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107:806–812

    PubMed  CAS  Google Scholar 

  9. Karman J, Ling C, Sandor M, Fabry Z (2004) Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol 173:2353–2361

    PubMed  CAS  Google Scholar 

  10. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    PubMed  CAS  Google Scholar 

  11. Filippi M, Rocca MA (2003) MRI aspects of the “inflammatory phase” of multiple sclerosis. Neurol Sci 24(Suppl 5):S275–S278

    PubMed  Google Scholar 

  12. Bakshi R, Hutton GJ, Miller JR, Radue EW (2004) The use of magnetic resonance imaging in the diagnosis and long-term management of multiple sclerosis. Neurology 63:S3–S11

    PubMed  Google Scholar 

  13. Lin X, Blumhardt LD (2001) Inflammation and atrophy in multiple sclerosis: MRI associations with disease course. J Neurol Sci 189:99–104

    PubMed  CAS  Google Scholar 

  14. Antel JP, Becher B (1998) Central nervous system–immune interactions. In: Antel J, Birnbaum G, Hartung HP (eds) Clinical Neuroimmunology. BlackwellScience Publishing House, Chapter 3, pp 26–39

  15. Katz-Levy Y, Neville KL, Girvin AM, Vanderlugt CL, Pope JG, Tan LJ, Miller SD (1999) Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler’s virus-infected mice. J Clin Invest 104:599–610 (Comments)

    PubMed  CAS  Google Scholar 

  16. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    PubMed  CAS  Google Scholar 

  17. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    PubMed  CAS  Google Scholar 

  18. Matsumoto Y, Ohmori K, Fujiwara M (1992) Immune regulation by brain cells in the central nervous system: microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions. Immunology 76:209–216

    PubMed  CAS  Google Scholar 

  19. Hickey WF (1991) Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol 1:97–105

    PubMed  CAS  Google Scholar 

  20. Croft M, Bradley LM, Swain SL (1994) Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 152:2675–2685

    PubMed  CAS  Google Scholar 

  21. Gause WC, Lu P, Zhou XD, Chen SJ, Madden KB, Morris SC, Linsley PS, Finkelman FD, Urban JF (1996) H. polygyrus: B7-independence of the secondary type 2 response. Exp Parasitol 84:264–273

    PubMed  Google Scholar 

  22. Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258

    PubMed  CAS  Google Scholar 

  23. Friese MA, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128:1747–1763

    PubMed  Google Scholar 

  24. Goverman J, Perchellet A, Huseby ES (2005) The role of CD8(+) T cells in multiple sclerosis and its animal models. Curr Drug Targets Inflamm Allergy 4:239–245

    PubMed  CAS  Google Scholar 

  25. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    PubMed  CAS  Google Scholar 

  26. Ford ML, Evavold BD (2005) Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur J Immunol 35:76–85

    PubMed  CAS  Google Scholar 

  27. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    PubMed  CAS  Google Scholar 

  28. Linker RA, Rott E, Hofstetter HH, Hanke T, Toyka KV, Gold R (2005) EAE in beta-2 microglobulin-deficient mice: axonal damage is not dependent on MHC-I restricted immune responses. Neurobiol Dis 19:218-228

    PubMed  CAS  Google Scholar 

  29. Vizler C, Bercovici N, Cornet A, Cambouris C, Liblau RS (1999) Role of autoreactive CD8+ T cells in organ-specific autoimmune diseases: insight from transgenic mouse models. Immunol Rev 169:81–92

    PubMed  CAS  Google Scholar 

  30. Miller JF, Morahan G (1992) Peripheral T cell tolerance. Annu Rev Immunol 10:51–69

    PubMed  CAS  Google Scholar 

  31. Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR (2002) Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu Rev Neurosci 25:491–505

    PubMed  CAS  Google Scholar 

  32. Lafaille JJ, Keere FV, Hsu AL, Baron JL, Haas W, Raine CS, Tonegawa S (1997) Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186:307–312

    PubMed  CAS  Google Scholar 

  33. Chu CQ, Wittmer S, Dalton DK (2000) Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 192:123–128

    PubMed  CAS  Google Scholar 

  34. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140:1506–1510

    PubMed  CAS  Google Scholar 

  35. Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB (1999) IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 163:5278–5286

    PubMed  CAS  Google Scholar 

  36. Becher B, Durell BG, Noelle RJ (2002) Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 110:493–497

    PubMed  CAS  Google Scholar 

  37. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    PubMed  CAS  Google Scholar 

  38. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110

    PubMed  CAS  Google Scholar 

  39. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    PubMed  CAS  Google Scholar 

  40. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    PubMed  CAS  Google Scholar 

  41. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    PubMed  CAS  Google Scholar 

  42. Kwidzinski E, Mutlu LK, Kovac AD, Bunse J, Goldmann J, Mahlo J, Aktas O, Zipp F, Kamradt T, Nitsch R, Bechmann I (2003) Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. J Neural Transm Suppl (65)29–49

  43. Becher B, Barker PA, Owens T, Antel JP (1998) CD95-CD95L—can the brain learn from the immune system? Trends Neurosci 21:114–117

    PubMed  CAS  Google Scholar 

  44. Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 27:62–74

    PubMed  CAS  Google Scholar 

  45. Vitkovic L, Maeda S, Sternberg E (2001) Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9:295–312

    PubMed  CAS  Google Scholar 

  46. Frohman EM, Frohman TC, Vayuvegula B, Gupta S, van den Noort S (1988) Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes. J Neurol Sci 88:339–346

    PubMed  CAS  Google Scholar 

  47. Hailer NP, Heppner FL, Haas D, Nitsch R (1998) Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol 8:459–474

    Article  PubMed  CAS  Google Scholar 

  48. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, Nitsch R, Bechmann I (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347–1349

    PubMed  CAS  Google Scholar 

  49. McGavern DB, Homann D, Oldstone MB (2002) T cells in the central nervous system: the delicate balance between viral clearance and disease. J Infect Dis 186(Suppl 2):S145–S151

    PubMed  Google Scholar 

  50. Cole GA, Nathanson N, Prendergast RA (1972) Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238:335–337

    PubMed  CAS  Google Scholar 

  51. Doherty PC, Allan JE, Lynch F, Ceredig R (1990) Dissection of an inflammatory process induced by CD8+ T cells. Immunol Today 11:55–59

    PubMed  CAS  Google Scholar 

  52. Lublin F (2005) Multiple sclerosis trial designs for the 21(st) century: building on recent lessons. J Neurol 252(Suppl 5):v46–v53

    PubMed  Google Scholar 

  53. An SF, Ciardi A, Giometto B, Scaravilli T, Gray F, Scaravilli F (1996) Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol (Berl) 91:494–503

    CAS  Google Scholar 

  54. Dorries R (2001) The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol 253:219–245

    PubMed  CAS  Google Scholar 

  55. Bechmann I, Peter S, Beyer M, Gimsa U, Nitsch R (2001) Presence of B7-2 (CD86) and lack of B7-1 (CD(80) on myelin phagocytosing MHC-II-positive rat microglia is associated with nondestructive immunity in vivo. FASEB J 15:1086–1088

    PubMed  CAS  Google Scholar 

  56. Maehlen J, Olsson T, Zachau A, Klareskog L, Kristensson K (1989) Local enhancement of major histocompatibility complex (MHC) class I and II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. J Neuroimmunol 23:125–132

    PubMed  CAS  Google Scholar 

  57. McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG (1993) Microglia in degenerative neurological disease. Glia 7:84–92

    PubMed  CAS  Google Scholar 

  58. O’Keefe GM, Nguyen VT, Benveniste EN (2002) Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: implications in neurological diseases. J Neurovirology 8:496–512

    CAS  Google Scholar 

  59. Perry VH (1998) A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 90:113–121

    PubMed  CAS  Google Scholar 

  60. Konno H, Yamamoto T, Suzuki h, Yamamoto H, Iwasaki Y, Ohara Y, Terunuma H, Harata N (1990) Targeting of adoptively transferred experimental allergic encephalitis lesion at the sites of wallerian degeneration. Acta Neuropathol (Berl) 80:521–526

    CAS  Google Scholar 

  61. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  62. Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107:161–166

    PubMed  CAS  Google Scholar 

  63. Schwartz M (2001) T cell mediated neuroprotection is a physiological response to central nervous system insults. J Mol Med 78:594–597

    PubMed  CAS  Google Scholar 

  64. Jones TB, Ankeny DP, Guan Z, McGaughy V, Fisher LC, Basso DM, Popovich PG (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 24:3752–3761

    PubMed  CAS  Google Scholar 

  65. Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, Lee S, Whitacre CC, Popovich PG (2002) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 22:2690–2700

    PubMed  CAS  Google Scholar 

  66. Goebels N, Hofstetter H, Schmidt S, Brunner C, Wekerle H, Hohlfeld R (2000) Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123(Pt 3):508–518

    PubMed  Google Scholar 

  67. Meinl E, Hohlfeld R (2002) Immunopathogenesis of multiple sclerosis: MBP and beyond. Clin Exp Immunol 128:395–397

    PubMed  CAS  Google Scholar 

  68. Lee SC, Raine CS (1989) Multiple sclerosis: oligodendrocytes in active lesions do not express class II major histocompatibility complex molecules. J Neuroimmunol 25:261–266

    PubMed  CAS  Google Scholar 

  69. Prat A, Becher B, Antel JP (1999) Induction of B7.1 and B7.2 co-stimulatory molecules on the surface of human brain endothelial cells. J Neuroimmunol 90:24

    Google Scholar 

  70. Becher B, Prat A, Antel JP (2000) Brain–immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29:293–304

    PubMed  CAS  Google Scholar 

  71. Risau W, Engelhardt B, Wekerle H (1990) Immune function of the blood–brain barrier: incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J Cell Biol 110:1757–1766

    PubMed  CAS  Google Scholar 

  72. Prineas JW (1979) Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203:1123–1125

    PubMed  CAS  Google Scholar 

  73. del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system. Hoeber, New York, pp 481–534

    Google Scholar 

  74. Schmidtmayer J, Jacobsen C, Miksch G, Sievers J (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: membrane currents. Glia 12:259–267

    PubMed  CAS  Google Scholar 

  75. Streit WJ, Graeber MB (1993) Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. Glia 7:68–74

    PubMed  CAS  Google Scholar 

  76. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    PubMed  CAS  Google Scholar 

  77. Hickey WF, Vass K, Lassmann H (1992) Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51:246–256

    PubMed  CAS  Google Scholar 

  78. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7:1356–1361

    PubMed  CAS  Google Scholar 

  79. Becher B, Antel JP (1996) Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18:1–10

    PubMed  CAS  Google Scholar 

  80. Sedgwick JD, Ford AL, Foulcher F, Airriess R (1998) Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts. J Immunol 160:5320–5330

    PubMed  CAS  Google Scholar 

  81. Ulvestad E, Williams K, Bo L, Trapp B, Antel J, Mork S (1994) HLA class II molecules (HLA-DR, -DP, -DQ) on cells in the human CNS studied in situ and in vitro. Immunology 82:535–541

    PubMed  CAS  Google Scholar 

  82. Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    PubMed  CAS  Google Scholar 

  83. Li H, Newcombe J, Groome NP, Cuzner ML (1993) Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol Appl Neurobiol 19:214–223

    Article  PubMed  CAS  Google Scholar 

  84. Slobodov U, Reichert F, Mirski R, Rotshenker S (2001) Distinct inflammatory stimuli induce different patterns of myelin phagocytosis and degradation in recruited macrophages. Exp Neurol 167:401–409

    PubMed  CAS  Google Scholar 

  85. Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38:433–443

    PubMed  CAS  Google Scholar 

  86. Olson JK, Eagar TN, Miller SD (2002) Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J Immunol 169:2719–2726

    PubMed  CAS  Google Scholar 

  87. Becher B, Blain M, Antel JP (2000) CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. J Neuroimmunol 102:44–50

    PubMed  CAS  Google Scholar 

  88. Frei K, Siepl C, Groscurth P, Bodmer S, Schwerdel C, Fontana A (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 17:1271–1278

    PubMed  CAS  Google Scholar 

  89. Havenith CE, Askew D, Walker WS (1998) Mouse resident microglia: isolation and characterization of immunoregulatory properties with naive CD4+ and CD8+ T-cells. Glia 22:348–359

    PubMed  CAS  Google Scholar 

  90. Krakowski ML, Owens T (1997) The central nervous system environment controls effector CD4+ T cell cytokine profile in experimental allergic encephalomyelitis. Eur J Immunol 27:2840–2847

    PubMed  CAS  Google Scholar 

  91. Ford AL, Foulcher E, Lemckert FA, Sedgwick JD (1996) Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med 184:1737–1745

    PubMed  CAS  Google Scholar 

  92. Juedes AE, Ruddle NH (2001) Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 166:5168–5175

    PubMed  CAS  Google Scholar 

  93. Pender MP, Rist MJ (2001) Apoptosis of inflammatory cells in immune control of the nervous system: role of glia. Glia 36:137–144

    PubMed  CAS  Google Scholar 

  94. Howard LM, Miller SD (2001) Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J Immunol 166:1547–1553

    PubMed  CAS  Google Scholar 

  95. Weinberg AD, Wegmann KW, Funatake C, Whitham RH (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162:1818–1826

    PubMed  CAS  Google Scholar 

  96. Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–974

    PubMed  CAS  Google Scholar 

  97. Becher B, Durell BG, Noelle RJ (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 112:1186–1191

    PubMed  CAS  Google Scholar 

  98. Mendel I, Shevach EM (2002) Differentiated Th1 autoreactive effector cells can induce experimental autoimmune encephalomyelitis in the absence of IL-12 and CD40/CD40L interactions. J Neuroimmunol 122:65–73

    PubMed  CAS  Google Scholar 

  99. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    PubMed  CAS  Google Scholar 

  100. Frucht DM (2002) IL-23: a cytokine that acts on memory T cells. Sci STKE 2002:E1

    Google Scholar 

  101. Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R (1994) Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56:732–740

    PubMed  CAS  Google Scholar 

  102. Fontana A, Fierz W, Wekerle H (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276

    PubMed  CAS  Google Scholar 

  103. Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21:141–147

    PubMed  CAS  Google Scholar 

  104. De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch Neurol 60:132–136

    Article  PubMed  Google Scholar 

  105. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    PubMed  CAS  Google Scholar 

  106. Nikcevich KM, Gordon KB, Tan L, Hurst SD, Kroepfl JF, Gardinier M, Barrett TA, Miller SD (1997) IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. J Immunol 158:614–621

    PubMed  CAS  Google Scholar 

  107. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    PubMed  CAS  Google Scholar 

  108. Issazadeh S, Navikas V, Schaub M, Sayegh M, Khoury S (1998) Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol 161:1104–1112

    PubMed  CAS  Google Scholar 

  109. Soos JM, Morrow J, Ashley TA, Szente BE, Bikoff EK, Zamvil SS (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161:5959–5966

    PubMed  CAS  Google Scholar 

  110. Tan L, Gordon KB, Mueller JP, Matis LA, Miller SD (1998) Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 160:4271–4279

    PubMed  CAS  Google Scholar 

  111. Aloisi F, Ria F, Columba-Cabezas S, Hess H, Penna G, Adorini L (1999) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol 29:2705–2714

    PubMed  CAS  Google Scholar 

  112. Cross AH, Ku G (2000) Astrocytes and central nervous system endothelial cells do not express B7-1 (CD80) or B7-2 (CD86) immunoreactivity during experimental autoimmune encephalomyelitis. J Neuroimmunol 110:76–82

    PubMed  CAS  Google Scholar 

  113. Williams KC, Dooley NP, Ulvestad E, Waage A, Blain M, Yong VW, Antel JP (1995) Antigen presentation by human fetal astrocytes with the cooperative effect of microglia or the microglial-derived cytokine IL-1. J Neurosci 15:1869–1878

    PubMed  CAS  Google Scholar 

  114. Klyushnenkova EN, Vanguri P (1997) Ia expression and antigen presentation by glia: strain and cell type-specific differences among rat astrocytes and microglia. J Neuroimmunol 79:190–201

    PubMed  CAS  Google Scholar 

  115. Massa PT, ter Meulen V, Fontana A (1987) Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 84:4219–4223

    PubMed  CAS  Google Scholar 

  116. McMenamin PG (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405:553–562

    PubMed  CAS  Google Scholar 

  117. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    PubMed  CAS  Google Scholar 

  118. Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R (2001) Turnover of rat brain perivascular cells. Exp Neurol 168:242–249

    PubMed  CAS  Google Scholar 

  119. Williams K, Alvarez X, Lackner AA (2001) Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36:156–164

    PubMed  CAS  Google Scholar 

  120. Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 88:7438–7442

    PubMed  CAS  Google Scholar 

  121. Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1998) Mature microglia resemble immature antigen presenting cells. Glia 22:72–85

    PubMed  CAS  Google Scholar 

  122. Matyszak MK, Perry VH (1998) Bacillus Calmette–Guerin sequestered in the brain parenchyma escapes immune recognition. J Neuroimmunol 82:73–80

    PubMed  CAS  Google Scholar 

  123. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    PubMed  CAS  Google Scholar 

  124. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T (1998) Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–3775

    PubMed  CAS  Google Scholar 

  125. Archambault AS, Sim J, Gimenez MA, Russell JH (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol 35:1076–1085

    PubMed  CAS  Google Scholar 

  126. Murphy CA, Hoek RM, Wiekowski MT, Lira SA, Sedgwick JD (2002) Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. J Immunol 169:7054–7062

    PubMed  CAS  Google Scholar 

  127. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    PubMed  CAS  Google Scholar 

  128. de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, 't Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    PubMed  Google Scholar 

  129. Fabriek BO, Zwemmer JN, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, Castelijns JA (2005) In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J Neuroimmunol 161:190–194

    PubMed  CAS  Google Scholar 

  130. Lamers KJ, de Reus HP, Jongen PJ (1998) Myelin basic protein in CSF as indicator of disease activity in multiple sclerosis. Mult Scler 4:124–126

    PubMed  CAS  Google Scholar 

  131. Lake J, Weller RO, Phillips MJ, Needham M (1999) Lymphocyte targeting of the brain in adoptive transfer cryolesion-EAE. J Pathol 187:259–265

    PubMed  CAS  Google Scholar 

  132. Phillips MJ, Needham M, Weller RO (1997) Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol 182:457–464

    PubMed  CAS  Google Scholar 

  133. Wenkel H, Streilein JW, Young MJ (2000) Systemic immune deviation in the brain that does not depend on the integrity of the blood–brain barrier. J Immunol 164:5125–5131

    PubMed  CAS  Google Scholar 

  134. Krakowski ML, Owens T (2000) Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur J Immunol 30:1002–1009

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Becher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, B., Bechmann, I. & Greter, M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84, 532–543 (2006). https://doi.org/10.1007/s00109-006-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0065-1

Keywords

Navigation