Skip to main content
Log in

Use of ri-mediated transformation for production of transgenic plants

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasaka, Y.; Mii, M.; Daimon, H. Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann. Bot. 81:355–362; 1998.

    Article  Google Scholar 

  • Andarwulan, N.; Shetty, K. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J. Agric. Food Chem. 47:1776–1780; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, S.; Zehra, M.; Gupta, M. M.; Kumar, S. Agrobacterium rhizogenes-mediated transformation of Artemisia annua—production of transgenic plants. Planta Medica 63:467–469; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bassil, N. V.; Proebsting, W. M.; Moore, L. W.; Lightfoot, D. A. Propagation of hazelnut stem cuttings using Agrobacterium rhizogenes. HortScience 26:1058–1060; 1991.

    Google Scholar 

  • Bell, R. L.; Scorza, R.; Srinivasan, C.; Webb, K. Transformation of Beurre Bosc pear with the rolC gene. J. Am. Soc. Hort. Sci. 124:570–574; 1999.

    CAS  Google Scholar 

  • Benavides, M. P.; Radice, S. Root induction in Simmondsia chinensis (Link) Schneid. using Agrobacterium rhizogenes. BioCell 22:109–114; 1998.

    Google Scholar 

  • Berthomieu, P.; Jouanin, L. Transformation of rapid cycling cabbage (Brassica oleracea var. capitata) with Agrobacterium rhizogenes. Plant Cell Rep. 11:334–338; 1992.

    Article  CAS  Google Scholar 

  • Boase, M. R.; Winefield, C. S.; Borst, N. K. Expression of the rolC gene of Agrobacterium rhizogenes in a regal pelargonium reduces plant height, leaf area and petal area. In Vitro Cell Dev. Biol. 34(Part II):58A; 1998.

    Google Scholar 

  • Boase, M. R.; Winefield, C. S.; Borst, N. K. Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf vegetative and floral phenotype. In: Charity, J. A., ed. Proceedings of the 13th Biennial Meeting of the International Association for Plant Tissue Culture Conference, 7–11 February, Rotorua, New Zealand. Forest Res. Bull. 213:22; 1999.

  • Boulter, M. E.; Croy, E.; Simpson, P.; Shields, R.; Croy, R. R. D.; Shirsat, A. H. Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes—a comparison. Plant Sci. 70:91–99; 1990.

    Article  CAS  Google Scholar 

  • Braun, R. H.; Reader, J. K.; Christey, M. C. Evaluation of cauliflower transgenic for resistance to Xanthomonas campestris pv. campestris. Acta Hort. 539:137–143; 2000.

    CAS  Google Scholar 

  • Brillanceau, M. H.; David, C.; Tempé, J. Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep. 8:63–66; 1989.

    Article  CAS  Google Scholar 

  • Caboni, E.; Lauri, P.; Tonelli, M.; Falasca, G.; Damiano, C. Root induction by Agrobacterium rhizogenes in walnut. Plant Sci. 118:203–208; 1996.

    Article  CAS  Google Scholar 

  • Cabrera-Ponce, J. L.; Vegas-Garcia, A.; Herrera-Estrella, L. Regeneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium rhizogenes. In Vitro Cell. Dev. Biol. Plant 32:86–90; 1996.

    Google Scholar 

  • Cho, H.-J.; Farrand, S. K.; Noel, G. R.; Widholm, J. M. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.-J.; Widholm, J. M.; Tanaka, N.; Nakanishi, Y.; Murooka, Y. Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci. 138:53–65; 1998.

    Article  CAS  Google Scholar 

  • Christey, M. C. Transgenic crop plants using Agrobacterium rhizogenes mediated transformation. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:99–111.

    Google Scholar 

  • Christey, M. C.; Braun, R. H. Transgenic vegetable and forage Brassica species: rape, kale, turnip and rutabaga (Swede). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 47. Transgenic crops, II; 2001:87–101.

  • Christey, M. C.; Braun, R. H.; Kenel, F. O.; Podivinsky, E. Agrobacterium rhizogenes-mediated transformation of swede. Proceedings of the 10th International Rapeseed Congress, Canberra. CDROM; 1999b.

  • Christey, M. C.; Braun, R. H.; Reader, J. K. Field performance of transgenic vegetable brassicas (Brassica oleracea and B. rapa) transformed with Agrobacterium rhizogenes. SABRAO. J. Breed. Genet. 31:93–108; 1999a.

    Google Scholar 

  • Christey, M. C.; Braun, R. H.; Reader, J. K.; Lambie, J. S.; Forbes, M. E. Field testing transgenic Basta resistant forage kale and forage rape. Proceedings of the 10th International Rapeseed Congress, Canberra. CDROM; 1999c.

  • Christey, M. C.; Sinclair, B. K. Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci. 87:161–169; 1992.

    Article  CAS  Google Scholar 

  • Christey, M. C.; Sinclair, B. K.; Braun, R. H. Phenotype of transgenic Brassica napus and B. oleracea plants obtained from Agrobacterium rhizogenes mediated transformation. In: Abstracts VIIIth International Congress of Plant Tissue and Cell Culture, Florence, Italy; 1994:157.

  • Christey, M. C.; Sinclair, B. K.; Braun, R. H.; Wyke, L. Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep. 16:587–593; 1997.

    CAS  Google Scholar 

  • Cogan, N. O. I.; Robinson, H. T.; Pink, D. A. C.; Newbury, H. J.; Puddephat I. J. Improving transformation efficiency in vegetable Brassica crop types. Abstracts of the 3rd ISHS International Symposium on Brassicas and 12th Crucifer Geneties Workshop, Wellesbourne, September 5–9 2000. Wellesbourne: HRI; 2000; Abstract p098.

    Google Scholar 

  • Curtis, I. S.; Davey, M. R.; Hedden, P.; Phillips, A. L.; Ward, D. A.; Thomas, S. G.; Lowe, K. C.; Power, J. B. Evaluation of gibberellin 20-oxidase and rolC genes for dwarfing ornamental plants. In: Altman, A.; Ziv, M.; Izhar, S., eds. Plant biotechnology and in vitro biology in the 21st century. Dordrecht: Kluwer Academic Publishers; 1999:123–126.

    Google Scholar 

  • Curtis, I. S.; He, C. P.; Power, J. B.; Mariotti, D.; Delaat, A.; Davey, M. R. The effects of Agrobacterium rhizogenes rolab genes in lettuce. Plant Sci. 115:123–135; 1996.

    Article  CAS  Google Scholar 

  • Daimon, H.; Mii, M. Plant regeneration and thiophene production in hairy root cultures of Rudbeckia hirta L. used as an antagonistic plant to nematodes. Jap. J. Crop Sci. 64:650–655; 1995.

    CAS  Google Scholar 

  • Damiani, F.; Arcioni, S. Transformation of Medicago arborea L. with an Agrobacterium rhizogenes binary vector carrying the hygromycin resistance gene. Plant Cell Rep. 10:300–303; 1991.

    Article  CAS  Google Scholar 

  • Damiani, F.; Paolocci, F.; Cluster, P. D.; Arcioni, S.; Tanner, G. J.; Joseph, R. G.; Li, Y. G.; de Majnik, J.; Larkin, P. J. The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants Aust. J. Plant Physiol. 26:159–169; 1999.

    CAS  Google Scholar 

  • Damiano, C.; Archilletti, T.; Caboni, E.; Lauri, P.; Falasca, G.; Mariotti, D.; Ferraiolo, G. Agrobacterium mediated transformation of almond: in vitro rooting through localised infection of A. rhizogenes w.t. Acta Hort. 392:161–169; 1995.

    CAS  Google Scholar 

  • Das, S.; Jha, T. B.; Jha, S. In vitro propagation of cashewnut. Plant Cell Rep. 15:615–619; 1996.

    Article  CAS  Google Scholar 

  • Davey, M. R.; Mulligan, B. J.; Gartland, K. M. A.; Peel, E.; Sargent, A. W.; Morgan, A. J. Transformation of Solanum and Nicotiana species using an Ri plasmid vector. J. Exp. Bot. 38:1507–1516; 1987.

    Article  CAS  Google Scholar 

  • David, C.; Chilton, M. D.; Tempé, J. Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technology 2:73–76; 1984.

    Article  CAS  Google Scholar 

  • Díaz, C. L.; Melchers, L. S.; Hooykaas, P. J. J.; Lugtenberg, B. J. J.; Kijne, J. W. Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis Nature 338:579–581; 1989.

    Article  Google Scholar 

  • Dolgov, S. V.; Mitiouchkina, T. Y.; Skryabin, K. G. Agrobacterial transformation of Chrysanthemum. Acta Hort. 447:329–334; 1997.

    Google Scholar 

  • Dommisse, E. M.; Leung, D. W. M.; Shaw, M. L.; Conner, A. J. Onion is a monocytyledonous host for Agrobacterium. Plant Sci. 69:249–257; 1990.

    Article  Google Scholar 

  • Downs, C. G.; Christey, M. C.; Davies, K. M.; King, G. A.; Sinclair, B. K.; Stevenson, D. G. Hairy roots of Brassica napus: II. Glutamine synthetase overexpression alters ammonia assimilation and the response to phosphinothricin. Plant Cell Rep. 14:41–46; 1994.

    Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsumaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl Acad. Sci. USA 94:2117–2121; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Estruch, J. J.; Chriqui, D.; Grossmann, K.; Schell, J.; Spena, A. The oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10:2889–2895; 1991b.

    PubMed  CAS  Google Scholar 

  • Estruch, J. J.; Schell, J.; Spena, A. The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J. 10:3125–3128; 1991a.

    PubMed  CAS  Google Scholar 

  • Faiss, M.; Strnad, M.; Redig, P.; Dolzak, K.; Hanus, J.; Van Onckelen, H.; Schmülling, T. Chemically induced expression of the rolC-encoded β-glucuronidase in transgenic tobacco plants and analysis of cytokinin metabolism: RolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J. 10:33–46; 1996.

    Article  CAS  Google Scholar 

  • Filippini, F.; Rossi, V.; Marin, O.; Trovato, M.; Costantino, P.; Downey, P. M.; Schiavo, F. L.; Terzi, M. A plant oncogene as a phosphatase. Nature 379:499–500; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Firoozabady, E.; Moy, Y.; Courtney-Gutterson, N.; Robinson, K. Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12:609–613; 1994.

    Article  CAS  Google Scholar 

  • Fladung, M. Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobacterium rhizogenes and characterization of transgenic plants. Plant Breed. 104:295–304; 1990.

    Article  Google Scholar 

  • Fladung, M.; Grossmann K.; Ahuja, M. R. Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes. J. Plant Physiol. 150:420–427; 1997a.

    CAS  Google Scholar 

  • Fladung, M.; Kumar, S.; Ahuja, M. R. Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Trans. Res. 6:111–121; 1997b.

    Article  CAS  Google Scholar 

  • Fladung, M.; Muhs, H.-J.; Ahuja, M. R. Morphological changes in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet. 45:349–354; 1996.

    Google Scholar 

  • Frugis, G.; Caretto, S.; Santini, L.; Mariotti, D. Agrobacterium rhizogenes rol genes induced productivity-related phenotypical modifications in creeping-rooted alfalfa types. Plant Cell Rep. 14:488–492; 1995.

    Article  CAS  Google Scholar 

  • Giovannini, A.; Pecchioni, N.; Rabaglio, M.; Allavena, A. Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In Vitro Cell. Dev. Biol. Plant 33:101–106; 1997.

    Google Scholar 

  • Giovannini, A.; Zottini, M.; Morreale G.; Spena, A.; Allavena, A. Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 35:70–75; 1999.

    CAS  Google Scholar 

  • Godo, T.; Tsujii, O.; Ishikawa, K.; Mii, M. Fertile transgenic plants of Nierembergia seoparia Sendtner obtained by a mikimopine type strain of Agrobacterium rhizogenes. Sci. Hort. 68:101–111; 1997.

    Article  CAS  Google Scholar 

  • Golds, T. J.; Lee, J. Y.; Husnain, T.; Ghose, T. K.; Davey, M. R. Agrobacterium rhizogenes mediated transformation of the forage legumes Medicago sativa and Onobrychis viciifolia. J. Exp. Bot. 42:1147–1157; 1991.

    Article  CAS  Google Scholar 

  • Grant, J. E.; Dommisse, E. M.; Conner, A. J. Gene transfer to plants using Agrobacterium. In: Murray, D. R., ed Advanced methods in plant breeding and biotechnology. Wallingford: CAB International; 1991:50–73.

    Google Scholar 

  • Grünwald, C.; Deutsch, F.; Eckstein, D.; Fladung, M. Wood formation in rolC transgenic aspen trees. Trees 14:297–304; 2000.

    Google Scholar 

  • Gutièrrez-Pesce, P.; Taylor, K.; Muleo, R.; Rugini, E. Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogens. Plant Cell Rep. 17:574–580; 1998.

    Article  Google Scholar 

  • Hamill, J. D.; Lidgett, A. J. Hairy root cultures—opportunities and key protocols for studies in metabolic engineering. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:1–30.

    Google Scholar 

  • Han, K.-H.; Gordon, M. P.; Strauss, S. H. High-frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can. J. For. Res. 27:464–470; 1997.

    Article  Google Scholar 

  • Han, K. H.; Keathley, D. E.; Davis, J. M.; Gordon, M. P. Regeneration of a transgenic woody legume (Robinia pseudoacacia L., black locust) and morphological alterations induced by Agrobacterium rhizogenes-mediated transformation. Plant Sci. 88:149–157; 1993.

    Article  Google Scholar 

  • Handa, T. Genetic transformation of Antirrhinum majus L. and inheritance of altered phenotype induced by Ri T-DNA. Plant Sci. 81:199–206; 1992.

    Article  CAS  Google Scholar 

  • Handa, T.; Transformation of prairie gentian (Eustoma grandiflorum) with Agrobacterium rhizogenes harboring β-glucuronidase (GUS) and neomycin phosphotransferase II (NPT II) genes. J. Jap. Soc. Hort. Sci. 64:913–918; 1996.

    CAS  Google Scholar 

  • Handa, T.; Sugimura, T.; Kato, E.; Kamada, H.; Takayanagi, K. Genetic transformation of Eustoma grandiflorum with rol genes. Acta Hort. 392:209–218; 1995.

    CAS  Google Scholar 

  • Hänisch ten Cate, C. H.; Ennik, E.; Roest, S.; Ramulu, K. S.; Dijkhuis, P.; de Groot, B. Regeneration and characterization of plants from potato root lines transformed by Agrobacterium rhizogenes. Theor. Appl. Genet. 75:452–459; 1988.

    Article  Google Scholar 

  • Hansen, J.; Jørgensen, J.-E.; Stougaard, J.; Marcker, K. A. Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep. 8:12–15; 1989.

    Article  Google Scholar 

  • Hatamoto, H.; Boulter, M. E.; Shirsat, A. H.; Croy, E. J.; Ellis, J. R. Recovery of morphologically normal transgenic tobacco from hairy roots co-transformed with Agrobacterium rhizogenes and a binary vector plasmid. Plant Cell Rep. 9:88–92; 1990.

    Article  CAS  Google Scholar 

  • Hatta, M.; Beyl, C. A.; Garton, S.; Diner, A. M. Induction of roots on jujube softwood cuttings using Agrobacterium rhizogenes. J. Hort. Sci. 71:881–886; 1996.

    Google Scholar 

  • Henzi, M. X.; Christey, M. C.; McNeil, D. L. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Plant Cell Rep. 19:994–999; 2000a.

    Article  CAS  Google Scholar 

  • Henzi, M. X.; Christey, M. C.; McNeil, D. L. Morphological characterisation and agronomic evaluation of transgenic broccoli (Brassica oleracea L. var. italica) containing an antisense ACC oxidase gene. Euphytica 113:9–18; 2000b.

    Article  CAS  Google Scholar 

  • Henzi, M. X.; Christey, M. C.; McNeil, D. L.; Davies, K. M. Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci. 143:55–62; 1999a.

    Article  CAS  Google Scholar 

  • Henzi, M. X.; McNeil, D. L.; Christey, M. C.; Lill, R. E. A tomato antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene causes reduced ethylene production in transgenic broccoli. Aus. J. Plant Physiol. 26:179–183; 1999b.

    Article  CAS  Google Scholar 

  • Hernalsteens, J. P.; Bytebier, B.; Van Montagu, M. Transgenic asparagus. In: Kung, S. D.; Wu, R., eds. Transgenic plants, vol. 2. Present status and social and economic impacts. San Diego: Academic Press; 1993:35–46.

    Google Scholar 

  • Holefors, A.; Xue, Z.-T.; Welander, M. Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci. 136:69–78; 1998.

    Article  CAS  Google Scholar 

  • Hoshino, Y.; Türkan, I.; Mii, M. Transgenic bialaphos-resistant snapdragon (Antirrhinum majus L.) produced by Agrobacterium rhizogenes transformation. Sci. Hort. 76:37–57; 1998.

    Article  CAS  Google Scholar 

  • Hosokawa, K.; Matsuki, R.; Oikawa, Y.; Yamamura, S. Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tiss. Organ Cult. 51:137–140; 1997.

    Article  Google Scholar 

  • Hosoki, T.; Shiraishi, K.; Kigo, T.; Ando, M. Transformation and regeneration of ornamental kale (Brassica oleracea var. acephala DC) mediated by Agrobacterium rhizogenes. Sci. Hort. 40:259–266; 1989.

    Article  Google Scholar 

  • Jasik, J.; Boggetti, B.; Caricato, G.; Mantell, S. Characterisation of morphology and root formation in the model woody perennial shrub Solanum aviculare Forst expressing rolABC genes of Agrobacterium rhizogenes. Plant Sci. 124:57–68; 1997.

    Article  CAS  Google Scholar 

  • Kamada, H.; Saitou, T.; Harada, H. No requirement of vernalization for flower formation in Ri-transformed Cichorium plants. Plant Tiss. Cult. Lett. 9:206–208; 1992.

    CAS  Google Scholar 

  • Kaneyoshi, J.; Kobayashi, S. Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. J. Jap. Soc. Hort. Sci. 68:734–738; 1999.

    CAS  Google Scholar 

  • Kifle, S.; Shao, M.; Jung, C.; Cai, D. An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep. 18:514–519; 1999.

    Article  CAS  Google Scholar 

  • Kiyokawa, S.; Kikuchi, Y.; Kamada, H.; Harada, H. Genetic transformation of Begonia tuberhybrida by Ri rol genes. Plant Cell Rep. 15:606–609; 1996.

    Article  CAS  Google Scholar 

  • Kumar, V.; Jones, B.; Davey, M. R. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep. 10:135–138; 1991.

    CAS  Google Scholar 

  • Kurioka, Y.; Suzuki, Y.; Kamada, H.; Harada, H. Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV 35S-rolC chimeric gene of the Ri plasmid. Plant Cell Rep. 12:1–6; 1992.

    Article  CAS  Google Scholar 

  • Lambert, C.; Bianco, J.; Garello, G.; Le Page-Degivry, M.-T. Alteration of hormonal levels and hormone sensitivity by Ri T-DNA-transformation of apple cuttings. J. Plant Physiol. 153:677–683; 1998.

    CAS  Google Scholar 

  • Lambert, C.; Tepfer, D. Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85:105–109; 1992.

    Article  CAS  Google Scholar 

  • Levesque, H.; Delepelaire, P.; Rouze, P.; Slightom, J.; Tepfer, D. Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Mol. Biol. 11:731–744; 1988.

    Article  CAS  Google Scholar 

  • Limami, M. A.; Sun, L.-Y.; Douat, C.; Helgeson, J.; Tepfer, D. Natural genetic transformation by Agrobacterium rhizogenes. Annual flowering in two biennials, Belgian endive and carrot. Plant Physiol. 118:543–550; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Macrae, S.; Van Staden, J. Agrobacterium rhizogenes-mediated transformation to improve rooting ability of eucalypts. Tree Physiol. 12:411–418; 1993.

    PubMed  Google Scholar 

  • Manners, J. M.; Way, H. Efficient transformation with regeneration of the tropical pasture legume Stylosanthes humilis using Agrobacterium rhizogenes and a Ti plasmid-binary vector system. Plant Cell Rep. 8:341–345; 1989.

    Article  CAS  Google Scholar 

  • Mariotti, D.; Fontana, G. S.; Santini, L.; Costantino, P. Evaluation under field conditions of the morphological alterations (‘hairy root phenotype’) induced on Nicotiana tobacum by different Ri plasmid T-DNA genes. J. Genet. Breed. 43:157–164; 1989.

    Google Scholar 

  • Martin-Tanguy, J.; Corbineau, F.; Burtin, D.; Ben-Hayyim, G.; Tepfer, D. Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with α-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers. Plant Sci. 93:63–76; 1993.

    Article  CAS  Google Scholar 

  • Martin-Tanguy, J.; Sun, L.-Y.; Burtin, D.; Vernoy, R.; Rossin, N.; Tepfer, D. Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene. Plant Physiol. 111:259–267; 1996.

    PubMed  CAS  Google Scholar 

  • McAfee, B. J.; White, E. E.; Pelcher, L. E.; Lapp, M. S. Root induction in pine (Pinus) and larch (Larix) spp. using Agrobacterium rhizogenes. Plant Cell Tiss. Organ Cult. 34:53–62; 1993.

    Article  Google Scholar 

  • McClure, B. A.; Hagen, G.; Brown, C. S.; Gee, M. A.; Guilfoyle, T. J. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239; 1989.

    Article  PubMed  CAS  Google Scholar 

  • McInnes, E.; Morgan, A. J.; Mulligan, B. J.; Davey, M. R. Phenotypic effects of isolated pRiA4 TL-DNA rol genes in the presence of intact TR-DNA in transgenic plants of Solanum dulcamara L. J. Exp. Bot. 42:1279–1286; 1991.

    Article  CAS  Google Scholar 

  • Mihaljević, S.; Katavić, V.; Jelaska, S. Root formation in micropropagated shoots of Sequoia sempervirens using Agrobacterium. Plant Sci. 141:73–80; 1999.

    Article  Google Scholar 

  • Mihaljević, S.; Stipković, S.; Jelaska, S. Increase of root induction in Pinus nigra explants using agrobacteria. Plant Cell Rep. 15:610–614; 1996.

    Article  Google Scholar 

  • Minlong, C.; Takayanagi, K.; Kamada, H.; Nishimura, S.; Handa, T. Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci. 159:273–280; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Momčilović, I.; Grubišić, D.; Kojić, M.; Nešković, M. Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tiss. Organ Cult. 50:1–6; 1997.

    Article  Google Scholar 

  • Montanelli, C.; Nascari, G. Introduction of an antibacterial gene in potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. J. Genet. Breed. 45:307–316; 1991.

    Google Scholar 

  • Morgan, A. J.; Cox, P. N.; Turner, D. A.; Peel, E.; Davey, M. R.; Gartland, K. M. A.; Mulligan, B. J. Transformation of tomato using an Ri plasmid vector. Plant Sci. 49:37–49; 1987.

    Article  CAS  Google Scholar 

  • Mugnier, J. Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep. 7:9–12; 1988.

    Article  Google Scholar 

  • Mugnier, J. Mycorrhizal interactions and the effects of fungicides, nematicides and herbieides on hairy root cultures. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:123–132.

    Google Scholar 

  • Nakano, M.; Hoshino, Y.; Mii, M. Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exp. Bot. 45:649–656; 1994.

    Article  CAS  Google Scholar 

  • Nenz, E.; Pupilli, F.; Paolocci, F.; Damiani, F.; Cenci, C. A.; Arcioni, S. Plant regeneration and genetic transformation of Lotus angustissimus. Plant Cell Tiss. Organ Cult. 45:145–152; 1996.

    Article  CAS  Google Scholar 

  • Newbury, H. J.; Senior, I. Transgenic Antirrhinum. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 48. Transgenic crops III; 2001:16–26.

  • Nilsson, O.; Moritz, T.; Imbault, N.; Sandberg, G.; Olsson, O. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes T L -DNA. Plant Physiol. 102:363–371; 1993.

    PubMed  CAS  Google Scholar 

  • Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112:493–502; 1996.

    PubMed  CAS  Google Scholar 

  • Noda, T.; Tanaka, N.; Mano, Y.; Nabeshima, S.; Ohkawa, H.; Matsui, C. Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep. 6:283–286; 1987.

    Article  Google Scholar 

  • Ohara, A.; Akasaka, Y.; Daimon, H.; Mii, M. Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep. 19:563–568; 2000.

    Article  CAS  Google Scholar 

  • Oksman-Caldentey, K. M.; Kivelä, O.; Hiltunen, R. Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci. 78:129–136; 1991.

    Article  CAS  Google Scholar 

  • Ondrej, M.; Biskova, R. Differentiation of Petunia hybrida tissues transformed by Agrobacterium rhizogenes and Agrobacterium tumefaciens. Biol. Plant. 28:152–155; 1986.

    Google Scholar 

  • Orlova, I. V.; Semenyuk, E. G.; Volodin, V. V.; Nosov, A. M.; Bur'yanov, Y. I. The system of regeneration and gene transformation of Rhaponticum carthamoides plants accumulating ecdysteroids. Russian J. Plant Physiol. 47:355–359; 2000.

    CAS  Google Scholar 

  • Otani, M.; Mii, M.; Handa, T.; Kamada, H.; Shimada, T. Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci. 94:151–159; 1993.

    Article  CAS  Google Scholar 

  • Otani, M.; Shimada, T.; Kamada, H.; Teruya, H.; Mii, M. Fertile transgenic plants of Ipomoea trichocarpa Ell. induced by different strains of Agrobacterium rhizogenes. Plant Sci. 116:169–175; 1996.

    Article  CAS  Google Scholar 

  • Patena, L.; Sutter, E. G.; Dandekar, A. M. Root induction by Agrobacterium rhizogenes in a difficult-to-root woody species. Acta Hort. 227:324–329; 1988.

    Google Scholar 

  • Pavingerova, D.; Ondrej, M. Comparison of hairy root and crown gall tumors of Arabidopsis thaliana. Biol. Plant. 28:149–151; 1986.

    Google Scholar 

  • Pellegrineschi, A.; Damon, J. P.; Valtorta, N.; Paillard, N.; Tepfer, D. Improvement of ornamental characters and fragrance production in lemon-scented geranium through genetic transformation by Agrobacterium rhizogenes. Bio/Technology 12:64–68; 1994.

    Article  CAS  Google Scholar 

  • Pellegrineschi, A.; Davolio-Mariani, O. Agrobacterium rhizogenes-mediated transformation of scented geranium. Plant Cell Tiss. Organ Cult. 47:79–86; 1996.

    Article  Google Scholar 

  • Pérez-Molphe-Balch, E.; Ochoa-Alejo, N. Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep. 17:591–596; 1998.

    Article  Google Scholar 

  • Phelep, M.; Petit, A.; Martin, L.; Duhoux, E.; Tempé, J. Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio/Technology 9:461–466; 1991.

    Article  CAS  Google Scholar 

  • Požárková, D.; Šiffelová, G.; Našinec, V.; Macháčková, I. Effects of the rolABC, rolAB, and CaMV 35S-rolC genes on growth and nitrogen fixation in Lotus corniculatus L. Biol. Plant. 37:491–499; 1995.

    Google Scholar 

  • Pradel, H.; Dumke-Lehmann, U.; Diettrich, B.; Luckner, M. Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J. Plant Physiol. 151:209–215; 1997.

    CAS  Google Scholar 

  • Puddephat, I.; Cogan, N. O. I.; Robinson, H. T.; Pink, D. A. C.; Barbara, D.; Higgins, J.; King, G. J.; Kearsey, M. J.; Newbury, H. J. Genetic constraints to the transformation of Brassica oleracea. Abstracts of the 3rd ISHS International Symposium on Brassicas and 12th Crucifer Genetics Workshop, Wellesbourne, September 5–9 2000. Wellesbourne: HRI; 2000: Abstract os29.

    Google Scholar 

  • Puddephat, I. J.; Robinson, H. T.; Fenning, T. M.; Barbara, D. J.; Morton, A.; Pink, D. A. C. Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol. Breeding; 2001(in press).

  • Quandt, H.-J.; Pühler, A.; Broer, I. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant-Microbe Interact. 6:699–706; 1993.

    Google Scholar 

  • Rech, E. L.; Golds, T. J.; Husnain, T.; Vainstein, M. H.; Jones, B.; Hammatt, N.; Mulligan, B. J.; Davey, M. R. Expression of a chimaeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep. 8:33–36; 1989.

    Article  CAS  Google Scholar 

  • Roy, M. C. Plant growth response to Agrobacterium rhizogenes. M.Appl.Sc. thesis. Lincoln College, University of Canterbury, New Zealand; 1989.

    Google Scholar 

  • Rugini, E.; Caricato, G.; Muganu, M.; Taratufolo, C.; Camilli, M.; Cammilli, C. Genetic stability and agronomic evaluation of six-year-old transgenic kiwi plants for rolABC and rolB gene. Acta Hort. 447:609–610; 1997.

    Google Scholar 

  • Rugini, E.; Mariotti, D. Agrobacterium rhizogenes T-DNA genes and rooting in woody species. Acta Hort. 300:301–308; 1991.

    Google Scholar 

  • Rugini, E.; Pellegrineschi, A.; Mencuccini, M.; Mariotti, D. Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10:291–295; 1991.

    Article  CAS  Google Scholar 

  • Saito, K.; Yamazaki, M.; Anzai, H.; Yoneyama, K.; Murakoshi, I. Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait. Plant Cell Rep. 11:219–224; 1992.

    Article  CAS  Google Scholar 

  • Schmülling, T.; Schell, J.; Spena, A. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7:2621–2629; 1988.

    PubMed  Google Scholar 

  • Scorza, R.; Zimmerman, T. W.; Cordts, J. M.; Footen, K. J.; Ravelonandro, M. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes. J. Am. Soc. Hort. Sci. 119:1091–1098; 1994.

    CAS  Google Scholar 

  • Shahin, E. A.; Sukhapinda, K.; Simpson, R. B.; Spivey, R. Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor. Appl. Genet. 72:770–777; 1986.

    Article  CAS  Google Scholar 

  • Shen, W. H.; Davioud, E.; David, C.; Barbier-Brygoo, H.; Tempé, J.; Guern, J. High sensitivity to auxin is a common feature of hairy root. Plant Physiol. 94:554–560; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Shin, D. I.; Podila, G. K.; Huang, Y.; Karnosky, D. F. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24:2059–2067; 1994.

    Google Scholar 

  • Sinkar, V. P.; White, F. F.; Furner, I. J.; Abrahamsen, M.; Pythoud, F.; Gordon, M. P. Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol. 86:584–590; 1988.

    PubMed  CAS  Google Scholar 

  • Stiller, J.; Martirani, L.; Tuppale, S.; Chian, R.-J.; Chiurazzi, M.; Gresshoff, P. M. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J. Exp. Bot. 43:1357–1365; 1997.

    Article  Google Scholar 

  • Stiller, J.; Nasinec, V.; Svoboda, S.; Nemcova, B.; Machackova, I. Effects of agrobacterial oncogenes in kidney vetch (Anthyllis vulneraria L.). Plant Cell Rep. 11:363–367; 1992.

    Article  CAS  Google Scholar 

  • Strobel, G. A.; Nachmias, A.; Hess, W. M. Improvements in the growth and yield of olive trees by transformation with the Ri plasmid of Agrobacterium rhizogenes. Can. J. Bot. 66:2581–2585; 1988.

    Article  Google Scholar 

  • Stummer, B. E.; Smith, S. E.; Langridge, P. Genetic transformation of Verticordia grandis (Myrtaceae) using wild-type Agrobacterium rhizogenes and binary Agrobacterium vectors. Plant Sci. 111:51–62; 1995.

    Article  CAS  Google Scholar 

  • Suginuma, C.; Akihama, T. Transformation of gentian with Agrobacterium rhizogenes. Acta Hort. 392:153–160; 1995.

    CAS  Google Scholar 

  • Sugita, K.; Matsunaga, E.; Ebinuma, H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep. 18:941–947; 1999.

    Article  CAS  Google Scholar 

  • Sun, L. Y.; Touraud, G.; Charbonnier, C.; Tepfer, D. Modification of phenotype in Belgian endive (Cichorium intybus) through genetic transformation by Agrobacterium rhizogenes: conversion from biennial to annual flowering. Transgenic Res. 1:14–22; 1991.

    Article  CAS  Google Scholar 

  • Tanaka, N.; Matsumoto, T. Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep. 13:87–90; 1993.

    Article  CAS  Google Scholar 

  • Tanaka, N.; Takao, M.; Matsumoto, T. Agrobacterium rhizogenes-mediated transformation and regeneration of Vinca minor L. Plant Tiss. Cult. Lett. 11:191–198; 1994.

    CAS  Google Scholar 

  • Tao, R.; Handa, T.; Tamura, M.; Sugiura, A. Genetic transformation of Japanese persimmon (Diospyros kaki L.) by Agrobacterium rhizogenes wild type strain A4. J. Jap. Soc. Hort. Sci. 63:283–289; 1994.

    CAS  Google Scholar 

  • Taylor, B. H.; Amasino, R. M.; White, F. F.; Nester, E. W.; Gordon, M. P. T-DNA analysis of plants regenerated from hairy root tumors. Mol. Gen. Genet. 201:554–557; 1985.

    Article  CAS  Google Scholar 

  • Tepfer, D. Transformation of several species of higher plants by Agrobacterium rhizogenes; sexual transmission of the transformed genotype and phenotype. Cell 37:959–967; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Tepfer, D. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution. In: Kosuge, T.; Nester, E. W., eds. Plant-microbe interactions. Molecular and genetic perspectives, vol. 3. New York: McGraw-Hill; 1989:294–342.

    Google Scholar 

  • Tepfer, D. Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant. 79:140–146; 1990.

    Article  CAS  Google Scholar 

  • Thomas, M. R.; Rose, R. J.; Nolan, K. E. Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep. 11:113–117; 1992.

    Article  CAS  Google Scholar 

  • Torregrosa, L.; Bouquet, A. Agrobacterium rhizogenes and A. tumefaciens co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tiss. Organ Cult. 49:53–62; 1997.

    Article  CAS  Google Scholar 

  • Trulson, A. J.; Simpson, R. B.; Shahin, E. A. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor. Appl. Genet. 73:11–15; 1986.

    Article  CAS  Google Scholar 

  • Tzfira, T.; Ben-Meir, H.; Vainstein, A.; Altman, A. Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Rep. 15:566–571; 1996.

    Article  CAS  Google Scholar 

  • Tzfira, T.; Vainstein, A.; Altman, A. rol-gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth and improved stem production index. Trees 14:49–54; 1999.

    Google Scholar 

  • Tzfira, T.; Vinocur, B.; Altman, A.; Vainstein, A. rol-transgenic Populus tremula: root development, root-borne bud regeneration and in vitro propagation efficiency. Trees 12:464–471; 1998.

    Google Scholar 

  • Uozumi, N.; Kobayashi, T. Artificial seed production through hairy root regeneration. In: Doran, P. M., ed. Hairy roots: culture and applications. Amsterdam: Harwood Academic Publishers; 1997:113–122.

    Google Scholar 

  • Uozumi, N.; Ohtake, Y.; Nakashimada, Y.; Morikawa, Y.; Tanaka, N.; Kobayashi, T. Efficient regeneration from GUS-transformed Ajuga hairy root. J. Ferm. Bioeng. 81:374–378; 1996.

    Article  CAS  Google Scholar 

  • Uzé, M.; Potrykus, I.; Sautter, C. Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.). Cereal Res. Commun. 28:17–23; 2000.

    Google Scholar 

  • van Altvorst, A. C.; Bino, R. J.; van Dijk, A. J.; Lamers, A. M. J.; Lindhout, W. H.; van der Mark, F.; Dons, J. J. M. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci. 83:77–85; 1992.

    Article  Google Scholar 

  • van der Salm, T. P. M.; Hänisch ten Cate, C. H.; Dons, H. J. M. Prospects for applications of rol genes for crop improvement. Plant Mol. Biol. Rep. 14:207–228; 1996.

    Google Scholar 

  • van der Salm, T. P. M.; van der Toorn, C. J. G.; Bouwer, R.; Hänisch ten Cate, C. H.; Dons, H. J. M. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol. Breed. 3:39–47; 1997.

    Article  Google Scholar 

  • Vinterhalter, B.; Orbović, V.; Vinterhalter, D. Transgenic root cultures of Gentiana punctata L. Acta Soc. Bot. Pol. 68:275–280; 1999.

    Google Scholar 

  • Visser, R. G. F.; Hesseling-Meinders, A.; Jacobsen, E.; Nijdam, H.; Witholt, B.; Feenstra, W. J. Expression and inheritance of inserted markers in binary vector carrying Agrobacterium rhizogenes-transformed potato (Solanum tuberosum L.). Theor. Appl. Genet. 78:705–714; 1989.

    CAS  Google Scholar 

  • Walton, N. J.; Belshaw, N. J. The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep. 7:115–118; 1988.

    Article  CAS  Google Scholar 

  • Webb, K. J.; Jones, s.; Robbins, M. P.; Minchin, F. R. Characterization of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci. 70:243–254; 1990.

    Article  Google Scholar 

  • Welander, M.; Pawlicki, N.; Holefors, A.; Wilson, F. Genetic transformation of apple rootstock M26 with rolB gene and its influence on rooting. J. Plant Physiol. 53:371–380; 1998.

    Google Scholar 

  • Welander, M.; Zhu, L. H. The rooting ability of rolB transformed clones of the apple rootstock M26 and its relation to gene expression. Acta Hort. 521:133–138; 2000.

    CAS  Google Scholar 

  • White, F. F.; Taylor, B. H.; Huffman, G. A.; Gordon, M. P.; Nester, E. W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bacteriol. 164:33–44; 1985.

    PubMed  CAS  Google Scholar 

  • Winefield, C.; Lewis, D.; Arathoon, S.; Deroles, S. Alteration of Petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5:543–551; 1999.

    Article  CAS  Google Scholar 

  • Yamakawa, Y.; Chen, L. H. Agrobacterium rhizogenes-mediated transformation of kiwifruit (Actinidia deliciosa) by direct formation of adventitious buds. J. Jap. Soc. Hort. Sci. 64:741–747; 1996.

    Article  Google Scholar 

  • Yamazaki, M.; Son, L.; Hayashi, T.; Morita, N.; Asamizu, T.; Mourakoshi, I.; Saito, K. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep. 15:317–321; 1996.

    Article  CAS  Google Scholar 

  • Yang, D.-C.; Choi, Y.-E. Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep. 19:491–496; 2000.

    Article  CAS  Google Scholar 

  • Yoshimatsu, K.; Shimomura, K. Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant Cell Rep. 11:132–136; 1992.

    Article  CAS  Google Scholar 

  • Zhan, X.; Jones, D. A.; Kerr, A. The pTiC58 tzs gene promotes high-efficiency root induction by agropine strain 1855 of Agrobacterium rhizogenes. Plant Mol. Biol. 14:785–792; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, X. C.; Jones, D. A.; Kerr, A. Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol. Biol. 11:551–559; 1988.

    Article  CAS  Google Scholar 

  • Zhu, L. H.; Welander, M. Growth characteristics of the untransformed and transformed apple rootstock M26 with rolA and rolB genes under steady-state nutrient supply conditions. Acta Hort. 521:139–143; 2000.

    CAS  Google Scholar 

  • Zuker, A.; Tzfira, T.; Scovel, G.; Ovadis, M.; Shklarman, E.; Itzhaki, H.; Vainstein, A. RolC-transgenic carnation with improved horticultural traits: quantitative and qualitative analyses of greenhouse-grown plants. J. Am. Soc. Hort. Sci. 126:13–18; 2001.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary C. Christey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christey, M.C. Use of ri-mediated transformation for production of transgenic plants. In Vitro Cell.Dev.Biol.-Plant 37, 687–700 (2001). https://doi.org/10.1007/s11627-001-0120-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0120-0

Key words

Navigation